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2 Université Clermont Auvergne, Clermont Auvergne INP, CNRS, LIMOS, F-63000 Clermont–Ferrand, France.
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Abstract

Implicational bases (IBs) are a common representation of fi-
nite closure systems and lattices, along with meet-irreducible
elements. They appear in a wide variety of fields ranging from
logic and databases to Knowledge Space Theory.
Different IBs can represent the same closure system. There-
fore, several IBs have been studied, such as the canonical and
canonical direct bases. In this paper, we investigate the D-
base, a refinement of the canonical direct base. It is connected
with the D-relation, a must-have tool in the study of free lat-
tices. The D-base demonstrates desirable algorithmic prop-
erties, and together with the D-relation, it conveys essential
properties of the underlying closure system. Hence, comput-
ing the D-base and the D-relation of a closure system from
another representation is crucial to enjoy its benefits. How-
ever, complexity results for this task are lacking.
In this paper, we give algorithms and hardness results for the
computation of the D-base and D-relation. Specifically, (1)
we establish the NP-completeness of finding the D-relation
from an IB, even if the D-relation is acyclic; (2) we obtain a
polynomial-delay algorithm computing the D-base from an-
other IB, and (3) we give an output-quasipolynomial time al-
gorithm to compute the D-base from meet-irreducible ele-
ments instead of an IB. We conclude the paper with a discus-
sion regarding the E-base, a subset of the D-base.

Introduction
A closure system over a finite groundset X is a set system
containingX and closed under taking intersections. The sets
in a closure system are closed sets, and when ordered by in-
clusion they form a lattice. Lattices and closure systems are
used in a number of fields of mathematics and computer sci-
ence such as algebra (Gratzer 2011), databases (Mannila and
Räihä 1992), logic (Hammer and Kogan 1995), or Knowl-
edge Space Theory (Doignon and Falmagne 2012) to men-
tion but a few.

Often, a closure system is implicitly given by one of the
following two representations: meet-irreducible elements or
implications and implicational bases (IBs). The family of
meet-irreducible elements of a closure system is the unique
minimal subset of closed sets from which the whole sys-
tem can be rebuilt using intersections. An implication over
groundset X is a statement A→ c where A is a subset of X
and c and element of X . In A → c, A is the premise and c
the conclusion. The implication A → c stands for “if a set

includes A, it must also contain the element c”. An implica-
tional base (IB) over X is a collection of implications over
X . An IB encodes a unique closure system. On the other
hand, a closure system can be represented by several equiv-
alent IBs. IBs are known as Horn CNFs in logic (Boros et al.
2009; Hammer and Kogan 1995), covers of functional de-
pendencies in databases (Mannila and Räihä 1992), associa-
tion rules in data mining (Agrawal et al. 1996) or entailments
in Knowledge Space Theory (Doignon and Falmagne 2012).

This variety of applications brought a rich theory of im-
plications still at the core of several works, as witnessed
by surveys (Bertet et al. 2018; Wild 2017) and recent con-
tributions (Bérczi, Boros, and Makino 2023a,b; Bichoupan
2022, 2023; Nourine and Vilmin 2023). Specifically, since
two distinct IBs can represent the same closure system, sev-
eral IBs have been studied (Adaricheva, Nation, and Rand
2013; Bertet and Monjardet 2010; Guigues and Duquenne
1986; Wild 1994). Within this galaxy, the canonical base
and the canonical direct base are arguably the two most
shining stars. They are unique, and they reflect two com-
plementary ways of understanding IBs:

(1) The canonical base (Guigues and Duquenne 1986),
also known as the Duquenne-Guigues base, puts emphasis
on the premises of implications. Its implications are of the
form A→ C (rather than A→ c) where A is called pseudo-
closed and C is the closure of A, i.e. the set of all elements
derived from A. The canonical base has a minimum number
of implications, and can be reached from any other IB in
polynomial time (Wild 2017).

(2) The canonical direct base is defined by its conclusions
(see the survey (Bertet and Monjardet 2010)). It describes,
for each element c, the inclusion-wise minimal A sets deriv-
ing c in the closure system. Such minimal sets are the mini-
mal generators of c. The canonical direct base then gathers
all implications of the form A → c (known in logic as the
prime implicates in Horn CNFs). It enjoys the property of
being direct, meaning that the closure of a set can be com-
puted with a single pass over the implications. Moreover, the
canonical direct base naturally captures the δ-relation of lat-
tice theory (Monjardet and Caspard 1997), where bδameans
that a belongs to some minimal generator of b. This rela-
tion and its transitive closure have been used implicitly in
the context of Horn CNFs and implication-graphs for min-
imization (Boros, Čepek, and Kogan 1998) or to recognize



and optimize acyclic Horn functions and some of their gen-
eralizations (Boros et al. 2009; Hammer and Kogan 1995).

In this paper, we study a subset of the canonical direct
base: the D-base (Adaricheva, Nation, and Rand 2013). It
relies on particular minimal generators calledD-generators.
A minimal generator A of c is a D-generator of c if its clo-
sure with respect to binary implications—implications of the
form a→ c—is minimal as compared to those of other min-
imal generators of c. TheD-generators also appear under the
name minimal pairs in the study of semimodular closure op-
erators (Faigle and Herrmann 1981). The D-base then con-
sists In general, the D-base is much smaller than the canon-
ical direct base. Yet, it still enjoys directness as long as its
implications are suitably ordered. This makes the D-base
appealing for computational purposes. Several application
projects were carried out recently that provide analysis of
data by employing D-base (Nation et al. 2021; Adaricheva
et al. 2023).

Besides, the D-base embeds the D-relation of a closure
system: cDa holds if a belongs to a D-generator of c. The
D-relation has played a major role in lattice theory since
the 1970s (Jónsson and Nation 1975). It is crucial in the
study of free lattices (Freese, Ježek, and Nation 1995) and
for the doubling of convex sets (Day 1992). Also, the D-
relation compactly convey structural information of the un-
derlying closure system. The most striking examples are
lower bounded closure systems that are precisely charac-
terized by an acyclic D-relation (Freese, Ježek, and Na-
tion 1995). Acyclic closure systems (i.e. acyclic Horn func-
tions) (Adaricheva 2017) and closure systems generated by
sub-semilattices of semilattices (Adaricheva 1991) are well-
known examples of lower bounded systems.

Despite their importance, the algorithmic solutions for
several questions related to D-base and D-relation are still
lacking:

(1) Can we recover the D-relation from an arbitrary IB?
(2) Can we compute the D-base from an IB?
(3) How to find the D-base from the collection of meet-

irreducible elements of a closure system?

Main Contributions. In this paper, we study the afore-
mentioned questions. Moreover, we investigate the E-base,
a refinement of the D-base. As the D-base may be of expo-
nential size with respect to the input IB or meet-irreducible
elements, we express the complexity of our algorithms in
terms of the combined size of their input and their output.
This is output-sensitive complexity1 (Johnson, Yannakakis,
and Papadimitriou 1988). We propose the following results:

(1) Given an IB and two elements a, c, we show that it
is NP-complete to decide whether cDa holds (problem D-
RR). The problem is NP-complete for both acyclic closure
systems andD-acyclic closure systems withD-paths of con-
stant sizes.

(2) Given an IB, we give a polynomial-delay algorithm to
compute the corresponding D-base (problem DB-IB). Our
algorithm uses the supergraph traversal method and previous
results of (Ennaoui and Nourine 2016).

1the relevant notions are defined in the preliminaries

(3) Given a set of meet-irreducible elements (or closed
sets), we show that computing the D-base (problem DB-
M) can be achieved in output-quasipolynomial time. We ob-
tain this result by establishing the equivalence between DB-
M and dualization in distributive lattices (DLD). This latter
problem admits an output-quasipolynomial time (Elbassioni
2022).

(4) In the final section, we discuss a subset of the D-base:
the E-base. The E-base does not always faithfully repre-
sent the underlying closure system (Adaricheva, Nation, and
Rand 2013). Henceforth, the following question becomes
particularly interesting.
Question 1. For which closure systems is the E-base valid?
D-geometries are an example of such closure systems.

These are anti-exchange closure systems, or convex geome-
tries, without D-cycles. We show that D-geometries can be
recognized in polynomial time from an IB. Then, we ana-
lyze closure systems with exchange properties, i.e. lattices
of flats of matroids. We mention that the lattice of flats of bi-
nary matroids, projective geometries and atomistic modular
lattices are systems with E-base.

Related work. We begin with complexity results regard-
ing the D-relation. In (Adaricheva, Nation, and Rand 2013),
the authors provide sub and supersets of the D-relation that
can be obtained in polynomial time from any IB. On the one
hand, it is possible to refine any IB to a subset of the D-
base, which gives a subset of the D-relation. On the other
hand, the transitive closure of the D-relation can be recov-
ered from any IB. Similar results also exist for the δ-relation
(Boros, Čepek, and Kogan 1998). The hardness of comput-
ing the δ-relation can be obtained as a corollary of the NP-
completeness of the prime attribute problem in databases
(Lucchesi and Osborn 1978). Let us mention that when one
is given meet-irreducible elements instead of an IB, both the
D-relation and the δ-relation can be computed in polynomial
time by means of lattice-theoretic characterizations (Mon-
jardet and Caspard 1997; Freese, Ježek, and Nation 1995).
Still, to our knowledge, none of these results formally set-
tles the complexity of computing the D-relation from an IB,
especially with regard to the structure of the underlying clo-
sure system as we do in this paper.

We move to the tasks of computing the D-base from
an IB (DB-IB) or from meet-irreducible elements (DB-M).
In (Rodrı́guez-Lorenzo et al. 2015, 2017), the authors use
simplification logic to come up with two algorithms solv-
ing DB-IB. However, the complexity of these algorithms is
not analyzed. As for DB-M, (Adaricheva and Nation 2017)
give an algorithm based on hypergraph dualization. Yet,
their algorithm will produce in general a proper superset of
the D-base. Note that hypergraph dualization is a central
open problem in algorithmic enumeration (Eiter, Makino,
and Gottlob 2008). To date, the best algorithm for this task
is due to Fredman and Khachiyan (Fredman and Khachiyan
1996) and runs in output-quasipolynomial time. We finally
mention the of Freese et al. (Freese, Ježek, and Nation 1995)
(Listing 11.12, p. 232) which computes the D-base from
the whole closure system (in fact, a meet-join table of the
lattice) as input. As there is usually an exponential gap be-
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tween a closure and either of its representation, IB or meet-
irreducible elements, we cannot afford using this algorithm
in our context.

We also mention algorithms for finding the related canoni-
cal direct base. If the input representation is meet-irreducible
elements, it is well-known that the problem is equivalent to
hypergraph dualization (see e.g. (Mannila and Räihä 1992;
Wild 2017)). When an IB is given, the algorithm of (Lucch-
esi and Osborn 1978) (see also (Bérczi, Boros, and Makino
2023a)) listing the minimal keys of a closure system can be
adapted to list the minimal generators of a single element
with polynomial-delay. Besides, the algorithm of (Boros,
Crama, and Hammer 1990) computes the whole canonical
direct base with a total time linearly dependent on the num-
ber of implications in the output. These techniques cannot
be used out of the box to find the D-base as there may be
an exponential gap between the two IBs. Instead, we adapt
the procedure of (Ennaoui and Nourine 2016) to list the so
called ideal-minimal keys of a closure system. Nevertheless,
our approach naturally extends results on minimal genera-
tors, all the while taking care of the binary implications play-
ing an important role in the D-base.

Paper Organization. First, we give necessary definitions
regarding closure systems and their representations. Sec-
ondly, we establish the complexity of computing the D-
relation. Thirdly, we give the algorithms to compute the
D-base from different representations of a closure system.
Then, we discuss theE-base and systems with validE-base.
We conclude the paper by recalling our results and some
questions for further research.

Preliminaries
All the objects considered in this paper are finite. For notions
not defined here, we refer the reader to (Gratzer 2011; Korte,
Lovász, and Schrader 2012).

Closure operators, closure systems. Let X be a set. A
closure operator over X is a map φ : 2X → 2X such that,
for every A,B ⊆ X: (1) A ⊆ φ(A); (2) A ⊆ B implies
φ(A) ⊆ φ(B); and (3) φ(φ(A)) = φ(A). The pair (X,φ)
is a closure space. A subset F of X is closed if φ(F ) = F .
For brevity, we write φ(a) instead of φ({a}) for a ∈ X .
The family of closed sets of φ is called F . We have F =
{F ⊆ X : F = φ(F )} = {φ(A) : A ⊆ X}. We say
that φ is standard if for every a ∈ X , φ(a) \ {a} is closed.
Consequently, ∅ is closed and φ(a) 6= φ(b) unless a = b.
Let (X,φ) be a closure space and let K ⊆ X . We say that
K is a minimal spanning set of its closure if φ(K ′) ⊂ φ(K)
for every K ′ ⊂ K. If moreover φ(K) = X , K is a minimal
key of the closure space.

We move to closure systems. A set system (X,F) is a clo-
sure system if X ∈ F and F1 ∩ F2 ∈ F whenever F1, F2 ∈
F . There is a well-known correspondence between closure
operators and closure systems. More precisely, if (X,φ) is
a closure space, the set system (X,F) is a closure system.
Dually, a closure system (X,F) induces a closure operator
φ : 2X → 2X given by φ(A) =

⋂
{F ∈ F : A ⊆ F}. This

correspondence is one-to-one. The pair L = (F ,⊆) is the

(closure) lattice of (X,F). An antichain of L is a subset B
of F consisting of pairwise incomparable closed sets.
Remark 1. In this paper, we only consider standard closure
systems, without loss of generality. If (X,F) is a closure
system, we call φ the corresponding closure operator and L
the corresponding closure lattice (F ,⊆).

Let (X,F) be a closure system and let M ∈ F . The
closed set M is a meet-irreducible element of F if for every
F1, F2 ∈ F , F1 ∩ F2 = M implies F1 = M or F2 = M .
We denote by Mi(L) the meet-irreducible elements of the
closure lattice L = (F ,⊆). For every closed set F , we have
F =

⋂
{M ∈ Mi(L) : F ⊆ M}. Given a ∈ X and

M ∈ Mi(L), we write a ↑M if a /∈ M but a ∈ F for
every F ∈ F such that M ⊂ F .
Example 1. Let X = {1, 2, 3, 4, 5, 6} and consider the
closure system (X,F) whose closure lattice L = (F ,⊆)
is depicted in Figure 1. For convenience we write a set
as the concatenation of its elements, e.g. 1234 stands for
{1, 2, 3, 4}. For instance, φ(25) = 2456. We have Mi(L) =
{356, 13, 15, 1356, 1456, 124, 2456, 12456}.

3
5

1
4

24

56

356 13
15

456
156

1356
2456124

12456

123456

1456

∅

14

Figure 1: The closure lattice of Example 1. Meet-irreducible
elements are marked by black dots.

Let (X,F) be a standard closure system. We say that
(X,F) (and hence (X,φ)) is atomistic if φ(a) = {a} for
every a ∈ X . The closure operator φ satisfies the Anti-
Exchange Property (AEP), if x, y 6∈ A = φ(A), x 6= y
and x ∈ φ(A ∪ {y}) imply y 6∈ φ(A ∪ {x}). If, for the
same assumptions, the conclusion is y ∈ φ(A ∪ {x}), the
operator φ satisfies the Exchange Property (EP). The lattice
of a closure system which statisfies EP is geometric and cor-
responds to the lattice of flats of a matroid (White 1986).
A closure system whose closure operator satisfies AEP is a
convex geometry (Edelman and Jamison 1985). In a convex
geometry, each closed set F has a unique minimal spanning
set KF . If F is closed under union, (X,F) is distributive.
Distributive closure systems are convex geometries.

Implications, Implicational bases (IBs). We give some
standard notations regarding implications and implicational
bases (see also (Wild 2017)). Let X be a set. An implica-
tion over X is an expression A → c where A ∪ {c} ⊆ X ,
also called unit implication in (Bertet and Monjardet 2010).
In A → c, A is the premise and c the conclusion. An im-
plication is binary if A is a singleton. For simplicity, we
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write them a → c instead of {a} → c. An implicational
base (IB) over X is a pair (X,Σ) where Σ is a collection
of implications over X . An IB induces a closure operator
φ where a subset F of X is closed if for every implica-
tion A → c ∈ Σ, A ⊆ F implies c ∈ F . The closure of
C ⊆ X can be computed using the forward chaining pro-
cedure. This routine starts from C and construct a sequence
C = C0, C1, . . . , Cm = φΣ(C) of subsets of X such that,
for every 1 ≤ i ≤ m, Ci = Ci−1 ∪ {c ⊆ X : A → c ∈
Σ, A ⊆ Ci−1}. Each closure system can be represented by
several equivalent IBs. An implication A → c holds in a
closure system if and only if c ∈ φ(A).
Example 2. An IB for the closure system of Example 1 is:

Σ = {2→ 4, 6→ 5} ∪ {245→ 6, 34→ 1, 34→ 2,

34→ 5, 35→ 6, 45→ 6}
We conclude this paragraph by recalling the well-known

correspondence between IBs and (pure) Horn functions (see
also (Wild 2017; Bertet et al. 2018)). More precisely, an
implication A → c can be thought as a pure Horn clause
c ∨

∨
a∈A ¬a when the elements of X are seen as proposi-

tional variables. Thus, an IB (X,Σ) can be seen as a pure
Horn CNF ϕ over variables X . Moreover, there is a direct
one-to-one relationship between the closed sets associated
to (X,Σ) and the models of the function described by φ.

Canonical direct and D-base. We focus on specific IBs:
the canonical direct base and the D-base. In a later section,
we also discuss a subset of D-base which forms the E-base
in some closure systems. We delay the associated definitions
to the appropriate place.

Let (X,φ) be a closure space and let c ∈ X . A subset
A of X is a (non-trivial) minimal generator of c if c /∈ A,
c ∈ φ(A) but c /∈ φ(A′) for every A′ ⊂ A. For c ∈ X ,
genδ(c) is the family of all minimal generators of c. The
canonical direct base of the closure system (X,F) is the
IB (X,Σδ) where Σδ = {A → c : A ∈ genδ(c), c ∈ X}.
Implications of the canonical direct base are known as prime
implicates in the corresponding Horn CNF. Hence, (X,Σδ)
corresponds to the CNF with all possible prime implicates of
the associated Horn function (Bertet and Monjardet 2010).
Example 3. IB of Example 2 is not (X,Σδ) of the closure
system of Example 1. Indeed, 23 ∈ genδ(1), but 23 → 1 is
not in Σ. Also, 245 → 6 is in Σ, but 245 6∈ genδ(6) The
following is the listing of Σδ from genδ(1) to genδ(6):

Σδ =

{
23→ 1, 34→ 1, 34→ 2, 2→ 4,
23→ 5, 34→ 5, 6→ 5, 23→ 6,
25→ 6, 34→ 6, 35→ 6, 45→ 6

}
For theD-base, we need further definitions regarding clo-

sure systems. Let (X,φ) be a closure space. We consider
a new closure operator φb over X defined by φb(A) =⋃
a∈A φ(a). The corresponding closure system is (X,Fb)

and the associated closure lattice is called Lb. Note that Fb
is closed under taking union, i.e. F1 ∪ F2 ∈ Fb for every
F1, F2 ∈ Fb. Henceforth, the lattice Lb is distributive.

Let c ∈ X and let A ∈ gen(c). We say that A is a D-
generator of c if c /∈ φb(A) and for every A′ ∈ genδ(c),

φb(A′) ⊆ φb(A) implies A′ = A. The family of D-
generators of c is genD(c). The D-base associated to the
closure system (X,F) is then (X,ΣD) where ΣD = {A→
c : A ∈ genD(c), c ∈ X} ∪ Σb.
Example 4. Continuing Example 3, we can extract the IB
(X,Σb) from (X,Σ): Σb = {2 → 4, 6 → 5}. The IB
(X,Σ) in Example 2 is not the D-base of (X,F). Indeed,
34 ∈ genD(6), yet 34 → 6 is not in Σ. Note that 25 is in
genδ(6) but not in genD(6) since φb(45) = 45 ⊂ 245 =
φb(25). Finally:

ΣD = Σb ∪ {34→ 1, 34→ 2, 34→ 5,

34→ 6, 35→ 6, 45→ 6}

The D-base is always a subset of the canonical direct
base. While the two IBs coincide in atomistic closure sys-
tems, there may be an exponential gap between them in the
general case. This is demonstrated by the following exam-
ple.
Example 5. Let X = {a1, . . . , an, b1, . . . , bn, c} and let
Σ = {ai → bi : 1 ≤ i ≤ n} ∪ {b1 . . . bn → c}. The IB
(X,Σ) is the D-base of its closure system, while we have
Σδ = {d1 . . . dn → c : di ∈ {ai, bi}, 1 ≤ i ≤ n} ∪ {ai →
bi : 1 ≤ i ≤ n}. Thus, |Σ| = n+ 1 and |Σδ| = 2n + 1.

As a consequence, one cannot straightforwardly apply the
algorithms for finding the canonical direct base to find the
D-base.

We conclude this paragraph by mentioning φb-minimal
spanning sets, that will be useful in finding the D-base
from an arbitrary IB. A minimal spanning set A of F is
φb-minimal if for every (minimal) spanning set A′ of F ,
φb(A′) ⊆ φb(A) implies A′ = A. A φb-minimal spanning
set of X is a φb-minimal key of the closure system.

Relations δ andD. Minimal andD-generators induce two
binary relations over X . More precisely, we put cδa if a be-
longs to a minimal generator of c. This is the δ-relation. Sim-
ilarly, cDameans that a belongs to aD-generator of c.2 The
resulting relation is the D-relation. By definition, D ⊆ δ,
and the equality holds when Σb = ∅, i.e. when the underly-
ing closure system is atomistic. However, in general, D ⊂ δ
as illustrated in Figure 2.

There is a close connection between the relations δ and D
and implication-graphs (Boros, Crama, and Hammer 1990;
Hammer and Kogan 1995). The implication-graph of an IB
(X,Σ) is the directed graph G(Σ) = (X,E) where an arc
(a, c) belongs to G(Σ) if there exists an implication A → c
in Σ such that a ∈ A. Now, the δ-relation precisely consists
of the reversed arcs of G(Σcd). Similarly, the D-relation is
obtained from G(ΣD) by removing the arcs coming from
binary implications and reversing the remaining ones.
Example 6. Figure 2 illustrates the δ- andD-relations of the
closure system of Example 1. Note that D is a proper subset
of δ.

2the notations δ and D are standard terminology in lattice the-
ory (Adaricheva, Nation, and Rand 2013; Bertet and Monjardet
2010; Freese, Ježek, and Nation 1995; Monjardet and Caspard
1997)
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Figure 2: The δ-relation (left) and the D-relation (right) of
Example 1 represented as directed graphs.

When the δ-relation of a closure system (X,Σ) does not
have δ-cycles, we say that (X,Σ) is acyclic. Acyclic clo-
sure systems have been extensively studied as they corre-
spond to acyclic Horn functions, poset type convex geome-
tries and G-geometries (Boros et al. 2009; Hammer and
Kogan 1995; Adaricheva 2017; Wild 1994). When the D-
relation is acyclic the closure system is lower bounded, or
simply without D-cycles (Freese, Ježek, and Nation 1995;
Adaricheva, Nation, and Rand 2013). This class strictly gen-
eralizes acyclic closure systems. The closure system of Ex-
ample 1 is without D-cycles but it contains δ-cycles. Hence,
it is lower bounded but not acyclic.

Enumeration Complexity. We move to enumeration con-
cepts (Johnson, Yannakakis, and Papadimitriou 1988). Let
A be an enumeration algorithm with input x of size n and
output a set of solutions R(x) with size m. We assume
that a solution in R(x) has size poly(n). The algorithm
A runs in output-polynomial time if its execution time is
bounded by poly(n + m). If the delay between two solu-
tions output and after the last one is bounded by poly(n), A
has polynomial-delay. Note that if A has polynomial-delay,
it runs in output-polynomial time. We say that A runs in
output-quasipolynomial time if its execution time is bounded
by 2polylog(n+m). An enumeration problem Π1 is harder than
than an enumeration problem Π2 if there exists an output-
polynomial time algorithm solving Π2 whenever there is
one solving Π1. The problems Π1 and Π2 are polynomially
equivalent if they are both harder than each other.

Computing the D-relation from an IB
In this section we establish the hardness of computing the
D-relation of a closure system (X,F) given by an arbitrary
IB (X,Σ). The D-relation is a binary relation over elements
of X . Hence, the problem of computing D can be reduced
to the problem of checking whether cDa holds for each pair
a, c of X:

D-Relation Recognition (D-RR)
Input: An IB (X,Σ), and a, c ∈ X .
Question: Does cDa hold?

The hardness of the corresponding problem for δ is a
straightforward corollary of the hardness of the prime at-
tribute problem in databases (Lucchesi and Osborn 1978).
However, as demonstrated in Example 6, D is in general a
proper subset of δ. This is due to the requirement on φb, the
closure operator induced by the binary implications holding
in (X,F). Moreover, these existing results do not take care

of the structure of the δ- and D-relations of the underlying
closure system.

Here, we focus on the case where δ and D are acyclic.
Note that since D ⊆ δ, δ-acyclicity is stronger than D-
acyclicity. As mentioned in the introduction, closure systems
where δ orD are acyclic have been at the core of several pos-
itive results. However, we show that even when restricted to
acyclic closure systems, D-RR is NP-complete.

As a preliminary step, we show that D-RR belongs to
NP. On this purpose, we use a characterization of D-
generators given in (Freese, Ježek, and Nation 1995). It is
used in Algorithm 11.13 in combination with Equation (9)
(p. 230). We rephrase it in our terminology.

Lemma 1. Let (X,F) be a closure system, A ⊆ X and
c ∈ X . Then, A is a D-generator of c if and only if for every
a ∈ A, c /∈ φ(φb(A) \ {a}).

Corollary 2. Let (X,F) be a closure system, let A ⊆ X
and c ∈ X . Then, whether A is a D-generator of c can be
checked with a number of calls to φ being polynomial in the
size of X .

One can compute φ in polynomial time from both an IB
or meet-irreducible elements. We deduce:

Corollary 3. DB-M belongs to NP.

We proceed to the hardness of D-RR in acyclic closure
systems. In fact, the hardness result also holds under the
assumption that the premises of the input IB have constant
size. We give here the reduction, but the proof is omitted due
to space limitations.

Theorem 4. The problem D-RR is NP-complete in acyclic
closure systems represented by IBs with premises of size at
most 2.

Proof sketch. We first show that D-RR belongs to NP. A
certificate is a D-generator of A of c such that a ∈ A.
Note that (X,Σb) can be computed in polynomial time from
(X,Σ). Thus checking whether A is indeed a D-generator
can be achieved in polynomial time. It follows that D-RR is
in NP.

To show hardness, we use a reduction from 1-in-3-SAT.

1-in-3 SAT
Input: A positive 3-CNF ϕ = {C1, . . . , Cm}

over variables V = {v1, . . . , vn}
Question: Is there an assignment T of the variables

in V such that |T ∩Ci| = 1 for each Ci?
(T is seen as the set of variables set to 1)

Let ϕ = {C1, . . . , Cm} be a positive 3-CNF over vari-
ables V = {v1, . . . , vn}. We say that two variables vi, vj
are in conflict if there exists a clause Ck in ϕ that contains
both vi and vj . Let X = {c1, . . . , cm} ∪ {xi,j : 1 ≤ i ≤
m, 1 ≤ j ≤ 3} ∪ {z}. An element ci represents the clause
Ci, while xi,j represents the j-th literal of the clause Ci.
Now consider the following set of implications:

Σ = Σvar ∪ Σmod ∪ Σconf , where

• Σvar = {xi,j → xk,` : 1 ≤ i ≤ k ≤ m, 1 ≤ j, ` ≤
3 and xi,j = xk,` in ϕ},
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• Σmod = {cixi,j → ci+1 : 1 ≤ i < m, 1 ≤ j ≤ 3} ∪
{cmxm,j → z : 1 ≤ j ≤ 3},

• Σconf = {xi,jxk,` → z : 1 ≤ i, k ≤ m, 1 ≤ j, ` ≤
3 and xi,j , xk,` are in conflict in ϕ}.

Informally, Σvar connects the xi,j’s that are the same vari-
able in ϕ, Σmod models the fact that whenever the i-th clause
is satisfied, we can proceed to the (i+ 1)-th clause or z, and
Σconf represents the conflicts induced by the variables ap-
pearing together in a clause.

Considering the implicational base (X,Σ) the rest of the
proof consists in showing that zDc1 holds if and only if there
is a 1-in-3 assignement of the variables in ϕ. Note that since
G(Σ) is acyclic, (X,F) is also acyclic (Hammer and Ko-
gan 1995), and that the premises of Σ have size at most 2.
Moreover, as φb(c1) = {c1}, zδc1 is equivalent to zDc1.
For this reason, the analysis can be conducted over minimal
generators instead of D-generators.

Understanding what makes hard to decide whether cDa
holds is an intriguing question. A first idea comes from
the observation that in Theorem 4, c1 and z are sepa-
rated by a long D-path, i.e. a long directed path when the
D-relation is seen as a directed graph. Namely, we have
zDcmD . . .Dc2Dc1. This suggests the difficulty of solving
D-RR comes from the fact that two elements are separated
by several implications. However, we prove that the problem
remains NP-complete even when the length of a D-path is
constant. Interestingly though, this complexity comes at the
cost of cycles in the δ-relation.
Theorem 5. The problem D-RR remains NP-complete
even in closure systems without D-cycles where the length
of a longest D-path between two elements is at most 2.
Proof sketch. The reduction is another reduction from 1-in-3
SAT. Let ϕ = {C1, . . . , Cm} be a positive 3-CNF over vari-
ables V = {v1, . . . , vn}. Hence, let V = {x1, . . . , xn} be a
set of variables and let ϕ = {C1, . . . , Cm} be a positive 3-
CNF over V . For convenience, we put Ci = {`i,1, `i,2, `i,3}
for each 1 ≤ i ≤ m. Let X = V ∪ {c1, . . . , cm} ∪ {a, b} be
a new groundset, and let Σ be the following set of implica-
tions:

Σ = Σmod ∪ Σconf ∪ {ci → a : 1 ≤ i ≤ m}

where:
• Σmod = {avi → cj : 1 ≤ i ≤ n, 1 ≤ j ≤ m and vi ∈
Cj} ∪ {c1 . . . cm → b}

• Σconf = {vivj → b : 1 ≤ i, j ≤ n and vi, vj
are in conflict inϕ}

Informally, Σconf models all the conflicts in between two
variables appearing in a clause and Σmod models the fact
that taking one element in a clause together with a for all
the clauses yields a 1-in-3 assignment of ϕ. Finally, the im-
plications {ci → a : 1 ≤ i ≤ m} guarantee that a will never
appear in a minimal generator together with one of the ci’s.

Note that (X,Σ) can be constructed in polynomial time
from ϕ and V . Analyzing the D-relation we obtain relations
of the form ciDa, ciDvj if vj ∈ ci, bDci and bDvj if vj
is in a conflict. Then, bDa will hold if and only if ϕ has a
1-in-3 assignment.

Whether the D-relation can be computed in polynomial
time when restricted to acyclic closure systems withD-paths
of constant size remains an open question for future work.

Computing the D-base
In this section we give algorithms to compute the D-base
from an IB or a set of meet-irreducible elements.
D-base from Meet-irreducible elements (DB-M)
Input: The family of meet-irreducible elements

Mi(L) of a closure system (X,F)
Output: TheD-base (X,ΣD) associated to (X,F)

D-base from IB (DB-IB)
Input: An IB (X,Σ)
Output: The D-base (X,ΣD) associated to (X,Σ)

For DB-M, we show that the problem is equivalent to the
dualization of distributive lattices represented by implica-
tional bases. A recent algorithm (Elbassioni 2022) solves
this latter problem in output-quasipolynomial time. As for
DB-IB we give a polynomial delay algorithm based on a
procedure in (Ennaoui and Nourine 2016) for listing the so-
called minimal key-ideals of a closed set.

Solving DB-M in output-quasipolynomial time
We show that the problem DB-M is polynomially equivalent
to the problem of dualization a distributive lattice given by
an IB. We deduce an algorithm to solve DB-M in output-
quasipolynomial time.

We first give some definitions related to dualization. Let
L = (F ,⊆) be the closure lattice associated to a closure
system (X,F) and let B−, B+ be two antichains of L. We
say that B− and B+ are dual in L if ↑B− ∪ ↓B+ = F and
↑B− ∩ ↓B+ = ∅. For each antichain B+ in L, there exists
a unique dual antichain B− to B+. In particular, we have
B− = min⊆({F ∈ L : F * B, for all B ∈ B+}). Sym-
metrically, each antichain B− has a unique dual antichain
B+. Now the problem of dualizing distributive lattices reads
as

Distributive Lattice Dualization (DLD)
Input: An IB (X,Σ) of a distributive closure sys-

tem (X,F) with closure lattice L, and an
antichain B+ of L.

Output: The dual antichain B− of B+ in L.

This problem is a generalization of hypergraph dualiza-
tion. In hypergraph dualization, Σ is empty and the corre-
sponding distributive lattice is in fact the Boolean lattice
consisting in the powerset of X .

We proceed to establish that DB-M is harder than DLD.

Lemma 6. There is an output-polynomial time algorithm
solving DLD if there is one solving DB-M.

We now show that DB-M reduces to solving |X| instances
of DLD. We first establish a correspondence between dual-
ization in the distributive lattice Lb and the D-generators of
(X,F).

Lemma 7. Let (X,F) be a standard closure system. For
c ∈ X , consider the two antichains of Lb:
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• B+ = {M ∈ Mi(L) : c ↑M}
• B− = {φb(A) : A ∈ genD(c)} ∪ {φb(c)}

Then, the two antichains B+ and B− are dual in Lb. More-
over, φb is a one-to-one correspondence between genD(c)
and {φb(A) : A ∈ genD(c)}.

An IB (X,Σb) can be computed in polynomial time from
Mi(L) by setting Σb = {a → c : a ∈ X, c ∈ φ(a)}. The
antichain B+ can also be computed in polynomial time by
checking for each M ∈ Mi(L) whether or not c ↑M . Thus,
listing the D-generators of some c ∈ X reduces to DLD. By
calling DLD for each c ∈ X we deduce:
Lemma 8. There exists an output-polynomial time algo-
rithm solving DB-M if there is one solving DLD.

Combining Lemmas 6 and 8 we obtain the desired result.
Theorem 9. The problems DB-M and DLD are polynomi-
ally equivalent.

It is shown in (Elbassioni 2022) that DLD can be solved
in output-quasipolynomial time. We deduce:
Corollary 10. The problem DB-M can be solved in output-
quasipolynomial time.

A polynomial-delay algorithm for DB-IB
Let (X,Σ) be an IB for (X,F). We give an algorithm to
solve DB-IB with polynomial delay. Our algorithm adapts
the supergraph traversal procedure in (Ennaoui and Nourine
2016) for the enumeration of the φb-minimal keys of a clo-
sure system. Recall that a minimal key K of (X,F) is φb-
minimal if φb(K ′) * φb(K) for each minimal key K ′ dis-
tinct from K.

As a first step, we show that given c ∈ X , we can list
genD(c) with polynomial-delay. Define Σc = Σ∪{c→ X}.
We put (X,Fc) as the closure system associated to (X,Σc).
Lemma 11. Let (X,F) be a closure system, c ∈ X and
A ⊆ X . Then,A ∈ genD(c) if and only ifA is a φb-minimal
key in (X,Fc).

The next statement describes a polynomial-delay algo-
rithm which takes as input an IB (X,Σ) and computes the
D-generators of an element in X .
Theorem 12. (Ennaoui and Nourine 2016, Proposition 8)
Let (X,Σ) be a standard IB, let c ∈ X and let S ⊆ genD(c)
be such that S 6= ∅. Then, S 6= genD(c) iff there exists
A ∈ S and B → d ∈ Σ such that |B| ≥ 2 and φb((φb(A) \
φb(d)) ∪B) does not contain any set of S .

The supergraph G(c) of D-generators of c, is a graph
whose vertices are the sets in genD(c), and an edge con-
nects A1 to A2 if there exists B → c ∈ Σ such that |B| ≥ 2
and A2 = Minimize(φb((φb(A1)\φb(c))∪B)). The pro-
cedure Minimize() is a greedy algorithm that computes
a D-generator from any generator, according to an order-
ing of the vertices of X: a < d, provided φb(a) ⊂ φb(d).
Such a procedure Minimize can be directly deduced from
Lemma 1 and 2. Due to (Ennaoui and Nourine 2016), G(c)
is strongly connected. Using a queue, a DFS-procedure lists
all theD-generators with polynomial-delay and possibly ex-
ponential space.

Corollary 13. Let (X,Σ) be an implicational base of a
closure system (X,F) and let c ∈ X . Then, there is a
polynomial-delay algorithm which computes genD(c) from
(X,Σ).

We are interested to enumerate all D-generators of Σ, i.e.
the set

⋃
c∈X genD(c). Notice that a D-generator may be-

long to genD(a) ∩ genD(c) with a 6= c.

Example 7. In (X,ΣD) of Example 4, 34 belongs to
genD(1), genD(2), genD(5) and genD(6).

To avoid repetitions in the enumeration, we consider the
supergraph G(X) being the union of the supergraphs G(c)
for all c ∈ X . Note that G(X) may not be strongly con-
nected, but it is a union of strongly connected graphs. More-
over, we can compute in polynomial time a D-generator in
G(c) for every c ∈ X by calling Minimize onX \{c}. We
denote by root(G(X)) theseD-generators. Due to Corollary
13 we can traverse all vertices of G(X) starting from ver-
tices in root(G(X)). Using a queue and DFS-search starting
from any vertex in root(G(X)), we can list allD-generators
without repetitions. When obtaining a solution A, we output
the implications A → c for each c such that A ∈ genD(c).
Since Σb can be computed in polynomial time from Σ at
pre-proccesing time. We deduce

Theorem 14. The problem DB-IB can be solved with
polynomial-delay.

E-base: a subset of the D-base
An important subset of the D-base is the E-base
(Adaricheva, Nation, and Rand 2013). Terminology simi-
lar to D-relation follows. Let A ⊆ X and c ∈ X . The set
A is a E-generator of c if it is a D-generator of c whose
closure is inclusion-wise minimal among closures of other
minimal generators of E, i.e. if for every A′ ∈ genD(c),
φ(A′) ⊆ φ(A) entails φ(A) = φ(A′). Let genE(c) denote
the E-generators of c. The E-base (X,ΣE) of (X,F) is
ΣE = {A→ c : A ∈ genE(c), c ∈ X} ∪ Σb.
Remark 2. There is connection between E-generators and
critical generators known in closures systems with AEP
(Korte, Lovász, and Schrader 2012). Moreover, closures of
E-generators are essential closed sets (Wild 1994), which
cannot be said about D-generators. These connections will
be discussed in detail in (Vilmin 2023).

Unlike the canonical direct and D-bases, the E-base may
not always form a valid IB of (X,φ) (Adaricheva, Nation,
and Rand 2013). This is demonstrated by the next example.

Example 8. Let X = {1, 2, 3, 4} and consider the closure
system defined by its D-base (X,ΣD) with ΣD = {13 →
2, 24→ 3, 14→ 2, 14→ 3}. The implications 14→ 2 and
14→ 3 are not in theE-base since φ(13), φ(24) ⊂ φ(14) =
X . Hence, the E-base comprises only 13 → 2 and 24 → 3,
which do not define the same closure system.

Still, in several important classes of closure systems the
E-base is valid. One of them is the class of closure systems
without D-cycles. The closure system of Example 4 fulfills
this property.
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Example 9 (Example 4 continued). To see that the closure
system is without D-cycles, remark that the directed graph
to the right of Figure 2 representing itsD-relation is acyclic.

Now, implication 34 → 6 is in the D-base, but not in
the E-base, because there is 35 → 6, with φ(35) ⊂ φ(34).
Removing 34 → 6 will still provide the base of the same
system, because 34→ 6 follows from 34→ 5 and 35→ 6.
Thus, this gives an example of the valid E-base.

In the first part of this section we focus on the subclass
of systems without D-cycles. We consider its subclass with
(AEP) which is calledD-geometries, and show that they can
be recognized efficiently from an arbitrary IB. In a second
part, we collect references and observations about E-base in
systems satisfying (EP). To the best of our knowledge, little
is known about E-base outside these two classes.

D-geometries. They are closure spaces (X,φ) without
D-cycles satisfying (AEP). Hence they are convex geome-
tries. While it is known that closure systems without D-
cycles can be recognized in polynomial time from an IB
(Adaricheva, Nation, and Rand 2013), it was shown in (Bi-
choupan 2022) that recognizing convex geometries from an
arbitray IB is coNP-complete. Nevertheless, (Adaricheva,
Freese, and Nation 2022) state that convex geometries could
be effectively identified from theD-base of a closure system
whose closure lattice is join semidistributive (which general-
izes both (AEP) and D-acyclicity). Here, we prove that un-
der the assumption ofD-acyclicity, (AEP) can be recognized
in polynomial time from an arbitrary IB. Since D-acyclicity
is easily verified, we deduce that the problem of recognizing
D-geometries admits a polynomial time algorithm.

D-Geometry Recognition (DGR)
Input: An implicational base (X,Σ).
Question: Is (X,F) a D-geometry?

Theorem 15. A closure system withoutD-cycles is not aD-
geometry if and only if its E-base contains implications of
the form Ac→ d and d→ c.

In closure systems without D-cycles, the E-base can be
retrieved in polynomial time from any IB (Adaricheva and
Nation 2014). We obtain:

Corollary 16. DGR can be solved in polynomial time.

Systems with the Exchange Property Atomistic closure
systems with (EP) of associated closure operator correspond
to lattices of flats of matroids. The study of implicational
bases of matroids was initiated in (Wild 1994) and contin-
ued in (Bérczi, Boros, and Makino 2023b). In particular, the
case of binary matroids, thus, graphic matroids and partition
lattices, is settled in the following statement. This section
assumes familiarity with concepts from matroid theory and
implicational systems. We refer the reader to (Wild 1994;
White 1986) for the necessary definitions.

Theorem 17. (Wild 1994, Theorem 10) In a simple (i.e.
standard) binary matroid, a closed set is essential if and only
if it is a closed circuit.

Corollary 18. Binary matroids have the valid E-base.

In fact, we observe more generally that any closure sys-
tem where essential sets are incomparable have valid E-
base. It turns out that, besides simple binary matroids, all
biatomic modular lattices fall into this scope. We note that
every atomistic modular closure system is a matroid.
Proposition 1. (Vilmin 2023) Let (X,F) be an atomistic
and modular closure system. Then its E-base is valid.

Projective geometry is a rank-3 matroid, where every two
rank-2 elements have a common atom.
Proposition 2. Projective geometry has a valid E-base.

Note that there exist projective geometries which are nei-
ther binary matroids, nor modular.
Example 10. With X = {1, 2, 3, 4, 5, 6, 7, 8} consider the
lines 1234, 561, 572, 673, 178, 268, 358. Any two lines have
a common point. Since 1, 2, 3, 4 form an interval isomorphic
to M4, the 6-element lattice with four atoms, this matroid is
not binary: in binary matroids every interval of height 2 has
at most 5 elements. Moreover, the lattice is not bi-atomic,
since 567 → 4, but 57 → 4, 67 → 4, 17 → 4 do not hold.
As every atomistic modular lattice is be bi-atomic (Bennett
1987), we conclude it is not modular.

But not all matroids have valid E-base, as the following
example demonstrates.
Example 11. LetX = {1, 2, 3, 4, 5} and consider the atom-
istic semimodular (non-modular) closure system (X,F)
where F contains ∅, X , 123 and all singletons and pairs
except 12, 13 and 23. The following implications holds:
12 → 3, 13 → 2, 23 → 1, and abc → X , for all triples abc
except 123. Hence, the implication 245 → 1 appears in the
D-base, but not in theE-base. Indeed, 23 is aE-generator of
1 satisfying φ(23) ⊂ φ(245). Yet, we cannot get 245 → 1
from E-covers. For this, one would need to use 23 → 1,
the only E-cover available for 1, but one cannot get 3 from
2, 4, 5 either, because 245 → 3 is also in D-base but 245 is
not an E-generator of 3. Thus, 245 → 1 cannot be dropped
and the E-base is not valid.

This prompts the following concluding questions.
Question 2. What are the matroids for which E-base is
valid?
Question 3. Is it possible that, even though the E-base of a
matroid is not valid, all essential sets are the closure of some
critical circuits (E-generator)?

Conclusion
In this paper, we have investigated complexity aspects of
the D-base and D-relation of a closure system. We have
shown that computing the D-relation from an IB is NP-
complete even in the acyclic setup. Besides, we gave output-
sensitive algorithms to compute the D-base from both an IB
and meet-irreducible elements. Studying the structure of the
D-relation in order to uncover other properties of closure
systems is a topic of further research.

The E-base is also particularly intriguing. It does not al-
ways constitute a valid IB, and we highlighted some classes
of closure systems (AEP or EP) where it is a faithful repre-
sentation. Characterizing closure systems with valid E-base
seems to be challenging and fascinating.
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