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Abstract

Constructive definitions, including inductive and recursive
definitions, are ubiquitous in mathematical texts and occur
in a wide variety of computer science fields and Knowledge
Representation applications. While in different areas there
is a high level of familiarity with certain types of construc-
tive definitions, fairly little interaction between different ar-
eas seems to exist, resulting in a lack of deep understanding
of principles and their applications. This paper aims to fill this
void by laying the foundations for a single unifying frame-
work, bringing together a wide variety of definitions. First,
we recall the principle of (monotone) inductive definition and
its formalization in fixpoint theory. We discuss the construc-
tive and the non-constructive interpretation of inductive defi-
nitions and the induction process. We then analyze examples,
including but not limited to (co)inductive and (co)recursive
definitions, found in a wide range of areas through the lens of
our proposed framework.

Introduction
In mathematics, there are perhaps few concepts so enigmatic
as that of inductive or recursive definitions.1 Students be-
come familiar with them through examples such as the tran-
sitive closure of a binary relation, the Fibonacci function or
the satisfaction relation of propositional or predicate logic.

Common to such definitions is that they define a concept
by describing how to construct it through iterated applica-
tion of rules, starting from the empty set. This construction
process is often called the induction process. For definitions
of sets, the defined set is often explained non-constructively
as the least set satisfying the rules; the constructive and non-
constructive ways are known to be equivalent. While usu-
ally, it is not formally explained what inductive definitions
mean, students apparently learn to understand them and rea-
son with them. Brouwer (1907), the famous construction-
ist, observed that many fundamental objects in mathemat-
ics were defined by describing how to construct them and
that in understanding these constructions, we rely on our

1Is there a difference between inductive and recursive defini-
tion? According to some there is, according to others not. In this
paper, we propose a way to distinguish inductive and recursive def-
initions that is sensible and seems to match with intuitions of some.

basic cognitive skills for temporal reasoning.2 It was later
argued that also our skills for causal reasoning play a role
here (Denecker 2000; Denecker and Ternovska 2007; De-
necker and Vennekens 2014): the hypothesis is that our un-
derstanding and reasoning capabilities for inductive defini-
tions stem from our understanding of the induction process
as a causal process, idealized and generalized to an (often
infinite) universe of mathematical objects. This suggests a
strong, but not well-known link between mathematics and
common sense knowledge. While recently a lot of effort in
the domain of large language models has resulted in surpris-
ingly good commonsense reasoners, it is well-known that
these are not reliable enough for sensitive applications where
exactness and correctness are crucial. For these applications
a logic-based approach that includes different constructive
definitions is desired. Therefore the study of the principle of
inductive definition is a worthy topic in Knowledge Repre-
sentation (KR).

It is clear that the concept of inductive definition plays an
important role in mathematics and foundations of computer
science. We claim it also plays an important role in KR, at
the meta-level (e.g., in the many inductive definitions used
to define syntax and semantics for logics in KR), and at the
object-level, since definitions constitute an important, com-
mon and precise form of human knowledge. In an important
class of applications, the definition is inductive, in which
case it is often not expressible in first-order logic (FO),
yielding a second reason for studying inductive definitions
(Denecker 2000). A third reason is the intuition of some re-
searchers that inductive and recursive definitions form the
declarative understanding of two well-known declarative
programming paradigms, logic and functional programming
(Denecker, Bruynooghe, and Marek 2001; Hudak 1989). Fi-
nally, due to the close connection between inductive defini-
tions and causal information, studying inductive definitions
is useful for expressing common sense causal knowledge
(Denecker 2000; Denecker and Ternovska 2007).

There exists extensive research on inductive defini-
tions (Spector 1961; Feferman 1970; Martin-Löf 1971;
Moschovakis 1974; Aczel 1977). Also (co)recursive defi-

2While we follow Brouwer in his views on the nature and im-
portance of constructive definitions, we use standard mathematics
and set theory (also in this paper) whenever suitable.



nitions have received a lot of attention in relation to func-
tional programming languages (Roberts 1986; Soare 1987;
Rubio-Sanchez 2017), as well as in domain theory where the
functions, and the domain they are defined on are defined si-
multaneously (Scott 1975; Abramsky and Jung 1994). While
there is a high level of familiarity with certain types of con-
structive definitions, in the current state of the art, fairly lit-
tle interaction between research on different types of def-
initions seems to exist, resulting in a lack of deep under-
standing of common principles and applications. Many re-
searchers seem aware that their theories only cover part of
the topic. Already a long time ago, Moschovakis (1974) ex-
plained how Kleene (1944) in early papers had consciously
studied constructive definitions3 but explicitly had drawn
back from studying all of them. Another complicating fac-
tor has been that inductive/recursive definitions have often
been studied from a recursion-theoretic point of view, as
programs to compute truth or function values, rather than
as plain definitions of a concept.

This paper contributes to the study of monotone construc-
tive definitions by introducing some key concepts as the
foundations for a unifying set-theoretical framework. This
offers the key insight that all these different types are in-
stances of the same basic constructive principles. This has
important practical implications. Firstly, it entails that re-
search on a particular type of definition might transcend its
class and actually be applicable to all constructive defini-
tions. E.g., non-monotone inductive definitions have been re-
searched algebraically (Denecker and Ternovska 2008), but
non-monotone recursive definitions remain uncharted terri-
tory. Our correspondence suggests a way to generalise the
study of non-monotonic definitions to other types of con-
structive definitions. Secondly, we believe this framework
will be instrumental to integrate different types of defini-
tions in a single knowledge representation language. The
main contribution of this paper is to show how a whole range
of examples from different areas can be reduced to instanti-
ations of the same fundamental principles, using standard
set-theoretic constructions. First, we recall the principle of
(monotone) inductive definition and its formalization in fix-
point theory, which will involve a semantic operator on a
so-called construction space, which is often richer than the
exact space, in which the defined object naturally lives. We
then analyze examples found in a wide range of areas. In
each example, we describe the exact space, the construction
space, the monotone semantic operator and the defined en-
tity. We will see how the construction space can be used
as the key factor to distinguish between classes of defi-
nitions from different research areas. We focus mostly on
(co)inductive definitions of sets and (co)recursive definitions
of functions, but also briefly discuss some more complex
types of constructive definitions.

Algebraic Formalisation
We now introduce the algebraic formalism needed for an in-
depth presentation of various types of constructive defini-

3In his work, Kleene used the term inductive definitions to de-
note the overarching class which we call constructive definitions.

tions and illustrate them with a first detailed example.
A partially ordered set (poset) ⟨C,≤⟩ is a set C equipped

with a partial order ≤, i.e., a reflexive, antisymmetric, tran-
sitive relation. When ≤ is clear from the context, we some-
times just write C to refer to ⟨C,≤⟩. As usual, we write
x < y for x ≤ y ∧ x ̸= y. If S is a subset of C, then x is an
upper bound of S if s ≤ x for each s ∈ S; it is a least up-
per bound (lub(S)) of S if moreover it is smaller than every
other upper bound. We call a poset ⟨C,≤⟩ a chain-complete
partial order (cpo) if every chain of C (i.e., every subset of
C for which ≤ is total) has a least upper bound. Each cpo
has a least element ⊥, which is the least upper bound of ∅.

A function f : C1 → C2 between cpo’s is monotone if for
all x, y ∈ C1 such that x ≤1 y, it holds that f(x) ≤2 f(y).
We refer to functions O : C → C with domain equal to the
codomain as operators. An element x ∈ C is a prefixpoint,
resp. a fixpoint of O if O(x) ≤ x, resp. O(x) = x (Smyth
and Plotkin 1982). By Tarski’s least fixpoint theorem (Tarski
1955), every monotone operator O on a cpo has a least fix-
point, that we denote lfp(O). It is also the least prefixpoint
of O and it can be constructed as the limit of the possibly
transfinite sequence (Oi)i≥0, where Oi+1 = O(Oi) and
Oλ = lub({Oj | j < λ}) for limit ordinals λ (in particular,
this means O0 = ⊥). This allows for a first, algebraic for-
malization of constructive definitions (Aczel 1977). A con-
structive definition for a concept D is (formalized as) an op-
erator O : C → C on a cpo C. It defines the object D repre-
senting D by describing how to construct it. The construc-
tion, normally called the induction process, is the sequence
(Oi)i≥0. The defined object D is the limit of this sequence.
This limit can be obtained by construction but it can also be
characterized non-constructively, as the least (pre)fixpoint of
O, yielding the duality between the constructive and non-
constructive view on inductive definitions.

Let us illustrate this abstract formalization of construc-
tive definitions on a prototypical example. To streamline the
presentation of various examples, we initially present a con-
structive definition as a set R of rules4 which resemble the
style used in logic programming, as well as in functional
programming. We believe this will lead to an improved un-
derstanding of our examples. Moreover, it gives an idea of
how constructive definitions in natural language can be for-
malised, which is essential when developing knowledge rep-
resentation languages that include them.

Example 1 (Transitive closure). Let G = (V,E) be a di-
rected graph. The set F of edges of the transitive closure
T = (V, F ) of G is defined inductively:
• (x, y) ∈ F if (x, y) ∈ E;
• (x, y) ∈ F if there exists a vertex z such that (x, z) ∈ F

and (z, y) ∈ F .
The set of rulesRF defining T = (V, F ) is as follows.⌊

∀x∀y : F (x, y)← E(x, y).
∀x∀y : F (x, y)← ∃z : F (x, z) ∧ F (z, y).

⌋
4We use different brackets to indicate the kind of definition: in-

ductive and recursive definitions will be enclosed in floor-brackets
⌊R⌋, coinductive and corecursive definitions in ceil-brackets ⌈R⌉,
and any other kind of constructive definition in curly brackets {R}.
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Figure 1: A graph G (left) and the start of two monotone
inductions of the definition of its transitive closure (right).
Dotted red arrows indicate newly derived edges at each state.

We expect this definition to construct a set F ⊆ V 2 of
edges. Hence, we consider the cpo CF = ⟨2V 2

,⊆⟩, with the
power set of V 2 as underlying set with subsetorder. More-
over, the rules in RF suggest an operator OF : CF → CF
showcasing rule application, by mapping a set S ∈ CF to

OF (S) = E ∪ {(x, y) | (x, z), (z, y) ∈ S for some z ∈ V }.

It is not hard to prove that OF is monotone5 and that its least
fixpoint is the set F of edges of the transitive closure of G. In
other words, OF formalizes the constructive definition of F .
The defined set F can be characterised non-constructively
as the least fixpoint of OF , or constructively as the limit of
the induction process, i.e., the sequence built by iterative ap-
plication of OF starting from the empty set.

Denecker and Vennekens (2014) remarked that given the
informal rules of Example 1, we most likely picture the in-
duction process as a sequence of applications of rule in-
stances, rather than iterations of OF . In this view of the in-
duction process, the elementary step is the application of a
rule instance (or perhaps more generally, the application of
a set of rule instances). This natural view of the induction
process raises two issues. First, it identifies the rule as the
modular unit of the definition and its induction process. This
modularity is abstracted away when formalizing the defi-
nition as an operator O. Second, it leads to a highly non-
deterministic notion of induction process, since rules can be
applied in different orders. This non-determinism is of great
pragmatical use when reasoning on the definition, since it
allows us to steer the induction process towards a particular
goal, e.g., towards computing whether a specific pair (a, b)
belongs to F . On the other hand, the non-determinism raises
the question whether all these different induction processes
are confluent (i.e., have the same limit). This should be the
case, otherwise the definition would be ambiguous!

In Fig. 1, the start of two such induction processes for Ex-
ample 1 are visualized. In the top sequence (F0, . . . , F3),
all applicable rules are applied at every step of the con-
struction, making it the fastest process. This corresponds
to (O0

F , . . . , O
3
F ), the first four iterations of the operator

OF . In the bottom sequence, a slower induction process
(F ′

0, . . . , F
′
3) is shown, one that first applies all instances of

the base rule, then a single instance of the transitivity rule
per iteration.

This more natural approach is formalized as a monotone
induction of O: an increasing sequence (xi)i≤β satisfying

5All the proofs are collected in the supplementary material due
to page limitations.

• xi ≤ xi+1 ≤ O(xi) , for successor ordinals i+ 1 ≤ β,
• xλ = lub({xi | i < λ}), for limit ordinals λ ≤ β (in

particular, O0 = ⊥).
Here, xi ≤ xi+1 ≤ O(xi) formalizes the idea of applying
some rule instances in xi, but not necessarily all. We say a
monotone induction of O is terminal if there does not exist
a strictly greater refinement of its limit, i.e., if xβ ̸< O(xβ).
It is straightforward to prove that all terminal monotone in-
ductions are confluent (see, e.g., (Bogaerts, Vennekens, and
Denecker 2018, Corollary 3.7)).

In the next section, we present several examples of con-
structive definitions. While they originate from very differ-
ent fields, they can be presented in a uniform way using the
following mathematical objects:
• A mathematical object D corresponding to the concept

defined by the constructive definition. We call D the de-
fined object.

• A set E whereD lives. This should be naturally identified
by the specifications in the constructive definition. We
call E the exact space.

• A cpo C = ⟨C,≤⟩ with an injection θ : E ↪→ 2C \
{∅} such that for all e1, e2 ∈ E with e1 ̸= e2, θ(e1) ∩
θ(e2) = ∅, i.e., different elements of the exact space are
mapped to disjoint subsets of C. The elements of θ(e)
are (potentially different) representations of e ∈ E in C.
We call C the construction space.

• An operator O : C → C on the construction space, of
which the least fixpoint coincides with the defined object
D: lfp(O) ∈ θ(D). We call O the semantic operator.

The elements of the construction space are meant to approx-
imate the elements of the exact space. Some, or all, elements
c ∈ C are representations of exact elements e ∈ E , namely
those for which c ∈ θ(e). Inversely, θ determines a surjec-
tive partial function π : C → E such that for c ∈ C, π(c)
exists and is equal to e iff c ∈ θ(e). In practice, we will
use π to project away any additional information that was
needed for construction and to derive the associated value in
the exact space from the least fixpoint of the operator, i.e.,
D = π(lfp(O)). Often but not always, the exact and the
construction space are the same and π is the identity func-
tion. E.g., in Example 1, the defined object is the set F of
edges of the transitive closure, the exact space EF is the set
2V

2

of all sets of possible edges; the construction space is
CF = ⟨2V 2

,⊆⟩; the semantic operator is OF .

Different Flavours of Constructive Definitions
In this section, we instantiate the earlier introduced frame-
work for a range of constructive definitions coming from dif-
ferent areas. We bring them together to show that indeed,
in different fields, the design of the exact and construction
space is the key point. Once this choice is made explicit,
typically the definition of the operator follows straightfor-
wardly, and the defined object is constructed by the fixpoint
theory. The final step may be to project the fixpoint from the
construction space to an element of the exact space, i.e., the
defined object, using π. In the majority of the proposed ex-
amples, this is not needed, since the injection θ just sends an
exact element e ∈ E to the singleton {e} ∈ 2C . However,



Example 7 illustrates where the projection π plays a role.

(Co)inductive Definitions of Sets
Inductive definitions are ubiquitous in mathematical texts.
Concepts such as the transitive closure, the natural numbers,
ordinals, and formulas in logic, are usually defined induc-
tively (Aczel 1986, 1977). On the other hand, many com-
mon infinite datatypes such as infinite streams, infinite trees
and coterms, are typically defined coinductively (Kozen and
Silva 2017). In general, these definitions define sets of ele-
ments of a certain type T , given by the context. Naturally,
the exact space then consists of all sets of elements of T ,
i.e., it is 2T . Intuitively, the construction process associated
with inductive definitions gradually grows the defined set,
starting from the empty set. In contrast, the construction pro-
cess for coinductive definitions puts stronger restrictions on
the defined set in every step, resulting in a gradually shrink-
ing set. In both cases the power set contains all elements
necessary for the construction, since we are only adding or
removing elements from a subset of T . By endowing the ex-
act space with the subset order ⊆ and the superset order ⊇,
we capture the respective behaviours of growing and shrink-
ing associated with induction and coinduction. For inductive
definitions we obtain the power set lattice ⟨2T ,⊆⟩ as a con-
struction space. This is a complete lattice and thus a cpo.
The same holds for the construction space ⟨2T ,⊇⟩.

Let us consider the domain of (finite or infinite) lists of
natural numbers. The set of all such lists is denoted by List .
We use a well-known notation for lists where Nil represents
the empty list and [x | y] represents the list starting with
x ∈ N (often referred to as the head) followed by the list y
(often referred to as the tail of the list).

Example 2 (Prime array). The set PA of all prime arrays is
defined inductively:
• Nil ∈ PA.
• If x is a prime number and y ∈ PA, then [x | y] ∈ PA.

This is a monotone inductive definition, formally repre-
sented by the set of rules⌊
∀y ∈ List : PA(y)← y = Nil .
∀x ∈ N,∀y ∈ List : PA([x | y])← P (x) ∧ PA(y).

⌋
with P the set of prime numbers. The exact space is the
power set 2List . As construction space we then have CPA =
⟨2List ,⊆⟩. The semantic operator for this example is OPA :
CPA → CPA , defined by mapping a set of lists S ⊆ CPA to

OPA(S) = {l | l = Nil or l = [x | y] for some x ∈ P, y ∈ S}

The fastest induction process corresponds to the sequence
∅ = PA0 ⊆ PA1 ⊆ . . . ⊆ PA, with PAi =⋃

m<i{[n0, . . . , nm] | n0, . . . , nm ∈ P}, the set of lists of
primes with length at most i. Thus, the defined set of prime
arrays consists of all finite lists containing only prime num-
bers. Interestingly, the same set of rules gives rise to a sen-
sible coinductive definition.

Example 3 (Prime lists). The set PL of all prime lists is
defined coinductively:
• Nil ∈ PL.

• [x | y] ∈ PL, if x is a prime number and y ∈ PL.
As suggested before, this definition corresponds to ex-

actly the same formal set of rules as the previous example
after replacing PA by PL⌈
∀y ∈ List : PL(y)← y = Nil .
∀x ∈ N,∀y ∈ List : PL([x | y])← PL(y) ∧ P (x).

⌉
Unsurprisingly, we consider the same exact space 2List

as in Example 2, and the construction space with inverted
order, namely ⟨2List ,⊇⟩. Except for its signature, the in-
verted order does not influence the semantic operator OPL ,
which equals OPA . Here, the fastest induction process re-
sults in the sequence List = PL0 ⊇ PL1 ⊇ . . . ⊇ PL,
with PLi =

⋃
m<i{[n0, . . . , nm] | n0, . . . , nm ∈ P} ∪

{[n0, . . . , ni, . . .] | n0, . . . , ni ∈ P} where [n0, . . . , ni, . . .]
denotes a list with length greater than i− 1. Intuitively, this
set corresponds to all lists l of natural numbers such that
no non-primes occur within the first i elements of the list.
Clearly, this sequence converges to the set of all finite and
infinite lists of prime numbers. A final adaptation of the list-
example restricts the defined object to only the infinite lists
of prime numbers.
Example 4 (Prime streams). The set PS of all prime
streams is defined coinductively:
• [x | y] ∈ PS if x is a prime number and y ∈ PS .

By excluding the case for the empty list Nil , we obtain
only the infinite lists, i.e., the streams. The definition is for-
malised by the following coinductive rule:

⌈ ∀x ∈ N,∀y ∈ List : PS ([x | y])← PS (y) ∧ P (x). ⌉

We keep the same exact space and construction space as
in Example 3. Here, the difference lies with the semantic
operator OPS which maps a set of lists S to

OPS (S) = {[y | z] | z ∈ S, y ∈ P}

The fastest induction process for this definition starts from
List , since by default everything belongs to the set. During
the first step it will delete the empty list and all lists with a
head a such that a ̸∈ P . At each subsequent step i it will
remove all lists for which the ith element either does not
exist, or it is not a prime number, giving us the sequence The
fastest induction process then gives us the sequence List =
PS 0 ⊇ PS 1 ⊇ . . . ⊇ PS , with PS i = {[n0, . . . , ni, . . .] |
∀j < i, nj ∈ P}, i.e., the set of all lists of length at least i of
which the first i elements are primes. Note that interpreting
this set of rules inductively rather than coinductively will not
be able to derive the inclusion of a single element, i.e., the
defined object would be the empty set.

Now, let us turn our attention to a different type of exam-
ples that uses an aggregate expression, known as the “com-
pany controls” problem (Kemp and Stuckey 1991).
Example 5 (Company control-relation). Given a set C of
companies, each of which owns a percentage of the shares
of the other companies, the control-relation is defined induc-
tively as follows: a company x controls another company y,
if the sum of the shares of y owned by x or by companies
controlled by x, is strictly more than half.
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Figure 2: An edge (a, b) in the leftmost graph indicates that
Sh(a, b) > 0 and its label shows the exact value of Sh(a, b).
The other graphs show an induction process. Newly derived
company pairs (represented by edges) are indicated with
dotted red lines. At first only the base case is added. Later,
combined ownership is derived.

In formal rule notation:⌊
∀x, y ∈ C : Cont(x, y)←

( ∑
z∈Contx

Sh(z, y)

)
> 0.5.

⌋
where Sh : C2 → [0, 1] is a function that maps a pair of
companies (x, y) to the fraction of shares of y owned by x
and Contx = {x} ∪ {u | Cont(x, u)}. Under the (natural)
assumption that Sh(x, y) ≥ 0, this definition is monotone.
The more companies that are determined to be under control
of a company x, the higher the fraction of shares controlled
by x in any (other) company y. The exact space is now given
by the set of binary relations over C, i.e., 2C

2

, as the con-
struction space we choose CCont = ⟨2C2

,⊆⟩. Once again,
the semantic operator OCont : CCont → CCont results from
rule application, i.e., it maps a binary relation R to

OCont(R) =

(x, y)

∣∣∣∣∣ ∑
z∈{x}∪{u|(x,u)∈R}

Sh(z, y) > 0.5

 .

Fig. 2 visualizes the induction process for an example
share-function Sh represented by a labeled directed graph.
Coincidentally, the depicted induction is the only possible
induction with strict increments since at every step exactly
one rule is applicable.

(Co)recursive Definitions of Functions
We now present another set of examples, this time regard-
ing the definition of functions. Recursion and its dual core-
cursion are extensively used as methods to define functions
in a wide variety of mathematical and computer scientific
fields (Roberts 1986; Soare 1987; Rubio-Sanchez 2017).
Some well-known mathematical functions, like the factorial
or the greatest common divisor, can be defined recursively,
and (co)recursive definitions of functions are supported in
most functional programming languages (Doets and Eijck
2004; Rusu and Nowak 2022; Downen and Ariola 2021).

For our formalization, the exact space of (co)recursive
definitions of functions is obtained in a natural way: if we
want to define a function f : X → Y , then the exact space is
the set of functions from X to Y , denoted by Y X . Contrary
to (co)inductive definitions, here we cannot just choose the
construction space to equal the exact space. The main rea-
son for this is that in intermediate steps of the construction
process only partial functions have been constructed.
Example 6 (Fibonacci sequence). The Fibonacci sequence
is viewed here as the function Fib : N → N, where Fib(n)

is the nth Fibonacci number. Its recursive definition, in the
formal notation, is the following:⌊

Fib(0) := 0. Fib(1) := 1.
∀n ∈ N : Fib(n+ 2) := Fib(n) + Fib(n+ 1).

⌋
Clearly, the exact space is NN. Moreover, we can get some

insight into the construction process from the rules above.
Note that the image of n+2 under Fib depends on the image
of n and n + 1. As long as the latter are not derived, it is
impossible to determine Fib(n + 2). Hence, it is natural to
think of Fib at an intermediate step of the construction as
a partial function, defined on a subset S of N. Equivalently,
we can view such a partial function as a function from N to
N⊥ := N∪ {⊥}, where ⊥ denotes “undefined”. The set N⊥
is naturally equipped with the definedness order ≤d, given
for all n,m ∈ N by n ≤d m iff n = m or n = ⊥. We take
the construction space CFib = ⟨(N⊥)

N,≤d⟩ to be the set of
functions (N⊥)

N, equipped with the pointwise extension of
≤d. This indeed forms a cpo.

It remains to define a monotone operator on CFib . First, the
sum +: N2 → N can be extended to N⊥ × N⊥ by defining
for each n ∈ N⊥, ⊥+ n = n+⊥ = ⊥. Then, the operator
OFib : CFib → CFib is defined to map a function f ∈ CFib to

OFib(f) :=

{
n 7→ n (for n ∈ {0, 1})
n+ 2 7→ f(n+ 1) + f(n)

By the definition of OFib , it is easy to see that the de-
sired function Fib is the least fixpoint of OFib . The element
lfp(OFib) can also be constructed as the limit of the increas-
ing sequence of functions f0, f1, . . . in CFib obtained by iter-
ating OFib on the bottom element of CFib . We write here the
functions in the first iterations of the process:

f0(n) := ⊥ f1(n) := f2(n) :=
0 if n = 0

1 if n = 1

⊥ otherwise


0 if n = 0

1 if n ∈ {1, 2}
⊥ otherwise

The enrichment of the exact space with ⊥ allows us
to deal with partially defined concepts, providing us with
a suitable choice for the construction space. Nevertheless,
such choice may be even more subtle, as we show next.
Example 7 (Ackermann function ). Ack : N2 → N is de-
fined recursively as follows: ∀y ∈ N : Ack(0, y) := y + 1.

∀x ∈ N : Ack(x+ 1, 0) := Ack(x, 1).

∀x, y ∈ N : Ack(x+ 1, y + 1) := Ack(x,Ack(x+ 1, y)).


The exact space is again the set of functions with the right

signature, namely N2 → N. Analogously to Example 6, the
function Ack is defined on every element of its domain only
after infinitely many steps. Hence, it may seem natural to
consider as construction space the functions from N2 to N⊥.
However, this enlargement of the construction space is not
sufficient: due to the third rule of the definition, during the
construction, the Ackermann function might be invoked on
an output of a partially constructed object, which can pos-
sibly be ⊥. This prompts us to add ⊥ to the domain of the
functions in the construction space.



Just as before, we can order this expanded space
N⊥

N⊥×N⊥ by the pointwise extension of the definedness or-
der ≤d on N⊥. However, the operator induced by the defi-
nition of Ack is not monotone on the full set of functions.
Fortunately, it was shown that this operator is monotone on
a sufficiently large subset defined next. We expand the de-
finedness order ≤d to N⊥ × N⊥ as the product order of ≤d

on N⊥, and consider the subset CAck of monotone functions
of NN⊥×N⊥

⊥ . It turns out that the operator of the Ackerman
definition, and the limit operation for increasing sequences
of monotone functions both preserve monotoniticy of func-
tions, making CAck ⊆ NN⊥×N⊥

⊥ a suitable space to perform
the induction process. In other words, we choose the con-
struction space to be the cpo CAck := ⟨CAck ,≤d⟩.

It is important to note that for the first time, the injection
θ is nontrivial, since we have enlarged the domain of the
considered functions to N⊥ × N⊥. In particular, θ : NN2 →
2CAck sends a function f : N2 → N to the set of functions

θ(f) :={g :(N⊥)
2→N⊥ | ∀(x, y) ∈ N2, f(x, y) = g(x, y)}.

Hence, it is easy to see that the surjective partial function
π : CAck → NN2

associated to θ is defined only on the set of
of functions whose restriction to N2 maps into N and maps
each such function to its restriction to N2.

By the above recursive definition of Ack , the choice for
the operator OAck : CAck → CAck is clear: for all f ∈ L,

OAck (f) :=


(0, y) 7→ y + 1

(x+ 1, 0) 7→ f(x, 1)

(x+ 1, y + 1) 7→ f(x, f(x+ 1, y))

where + is extended to N⊥×N⊥ as in Example 6. Note that
OAck (f) is indeed an element of CAck , since the composition
of monotone functions is monotone.

The construction process starts from the bottom element
⊥Ack of CAck , namely the function ⊥Ack : N⊥ ×N⊥ → N⊥
sending every pair to ⊥. By iteratively applying the op-
erator OAck , we obtain an increasing sequence of mono-
tone functions f0, f1, . . . in CAck , representing the partial
functions of the intermediate steps of the recursion. At the
first steps of the process we get the functions defined on
(x, y) ∈ N⊥ × N⊥ as follows: f0(x, y) := ⊥

f1(x, y) := f2(x, y) :={
y + 1 if x = 0

⊥ otherwise


y + 1 if x = 0

2 if (x, y) = (1, 0)

⊥ otherwise
Only after transfinitely many steps, we reach the least fix-

point of OAck . Finally, it is not hard to see that applying the
projection π on the least fixpoint yields the defined object,
i.e., π(lfp(OAck )) = lfp(OAck )

∣∣
N2 = Ack .

We now move to examples of co-recursive definitions of
functions. Once again, the choice of a suitable construction
space turns out to be non-trivial.

Example 8 (Co-Fibonacci). The co-Fibonacci function
co Fib : N2 → List , which maps a pair (x, y) of natural
numbers to the Fibonacci sequence starting with x, y, is de-
fined co-recursively to send (x, y) to [x | co Fib(y, x+ y)].

We can present the corecursive definition of co Fib by

⌈ ∀x, y ∈ N : co Fib(x, y) := [x | co Fib(y, x+ y)]. ⌉

In particular, co Fib(0, 1) is the list corresponding to the
Fibonacci sequence, defined recursively in Example 6. The
exact space is again clear from the signature of the function
we want to define: it is the set of functions from N2 to List .

As in Example 6, we need to enlarge the codomain of
the considered functions in order to represent intermediate
steps of the process. Thus, we define a set Listo, containing
lists of natural numbers and finite lists of natural numbers
ending with o. A list [x1, . . . , xn | o] of the latter type rep-
resents a list of natural numbers with overdefined o as tail.
In other words, the list [x1, . . . , xn | o] represents the set
{[x1, . . . , xn | l] : l ∈ List} of lists of natural numbers. In
particular, the list o represents the overdefined list, i.e., the
set of all lists of natural numbers.6 Accordingly, on Listo,
definedness order ≤d is defined inductively as follows:
• for all t ∈ Listo: t ≤d o
• for all x ∈ N, t1, t2 ∈ Listo: [x | t1] ≤d [x | t2] if
t1 ≤d t2

In this order, o is indeed “more defined” than any list. The
set Listo with the order ≤d is not a cpo since it has no least
element, however, with the inverted order ≥d it indeed is a
cpo, with “least” element o. The order ≥d can be extended
in the standard, pointwise way to (Listo)N

2

. We define the
construction space Cco Fib = ⟨(Listo)N2

,≥d⟩. The inversion
of the definedness order, often used for recursion, mimics
the order inversion between inductive and coinductive defi-
nitions (hence the term corecursion). Finally, we define the
operator Oco Fib : Cco Fib → Cco Fib by sending a function
f ∈ Cco Fib to

Oco Fib(f) : N2 → Listo : (x, y) 7→ [x | f(y, x+ y)].

By the definition of ≥d, it is easy to see that Oco Fib is a
monotone operator. Moreover, the desired function co Fib is
the least fixpoint of the operatorOco Fib . This coincides with
the limit of the increasing sequence f0, f1, . . . constructed
by iteratingOco Fib on the bottom element⊥Cco Fib

of Cco Fib ,
i.e., the function ⊥Cco Fib

: N2 → Listo sending every tuple
to o. We report here the images of the functions in the first
iterations of the process, depending on (x, y) ∈ N2:

f0(x, y) =⊥Cco Fib
(x, y) = o f2(x, y) =[x, y | o]

f1(x, y) =[x | o] f3(x, y) =[x, y, x+ y | o]

Definitions with Custom-Designed Cpo’s
In this third and last subsection, we present a final example
of a constructive definition of a function. Even though this
definition deviates from the standard (co)recursive account,
it can indeed be formalized using our proposed framework.
Just like Example 5, the definition illustrated here falls under
the company controls domain: in this case, we want to define
the number of shares of a company that another company
controls.

6Note that the earlier introduced notation [x | y] is used now to
denote a list of Listo with head a finite list x of natural numbers,
and tail a list y of Listo.



Example 9 (Controlled shares). If x and y are two compa-
nies, we say that x controls n shares of y if n is the sum of
the shares of y owned by x or any company z of which x
controls more than half of the shares.

We can formally define the desired function Csh : C2 →
[0, 1] as follows:{ ∀x∀y : Csh(x, y) :=

∑
z∈{x}∪{u|Csh(x,u)>0.5}

Sh(z, y).
}

where Sh : C2 → [0, 1] is still the function mapping a pair
of companies (x, y) to the fraction of shares of y owned
by x. The exact space is the set of functions from S2 to
the interval [0, 1]. The construction process is more com-
plex than before: we now need to be able to decide whether
Csh(x, y) > 0, 5 is true before Csh(x, y) is determined.

We can think about this construction process as a gradual
refinement of each tuple’s image. At the beginning of the
process, we have no information about the image of Csh ex-
cept that Csh(x, y) ∈ [0, 1] for all x, y ∈ C. At every rule
application we get new information on the lower bounds of
the images of elements of C2. Since the upper bounds re-
main constant equal to 1, we may as well identify the in-
terval in which an image is contained with its lower bound.
Now, the choice for a construction space CCsh becomes clear,
namely we consider the cpo of functions from C2 to [0, 1],
with the pointwise extension of the standard order ≤ on real
numbers. Finally, we can consider the monotone operator
OCsh : CCsh → CCsh , which maps a function f : C2 → [0, 1]
to OCsh(f), defined by

OCsh(f)(x, y) :=
∑

z∈{x}∪{u|f(x,u)>0,5}

Sh(x, y).

As anticipated, we can start the recursion from the bot-
tom element of CCsh , namely the function f0 sending ev-
ery pair of companies to 0. By iteratively applying the op-
erator OCsh we get an increasing sequence of functions
f0 ≤CCsh

f1 ≤CCsh
f2 ≤CCsh

· · · , whose limit is the desired
defined function Csh and coincides with the least fixpoint of
OCsh . Notice that at any step t of the construction process,
for each pair (x, y) ∈ C2, the image ft(x, y) may not be
the correct value of Csh(x, y). Only in the last step, when
the fixpoint is reached, certainty is reached of the correct
value Csh(x, y), for all pairs (x, y) at once. This is much
unlike previous examples. This type of construction, using
increasingly more precise bounds, lies at the basis of bound-
founded ASP (Aziz 2014; Cabalar et al. 2019).

Conclusion and Future Work
We investigated a heterogeneous set of monotone construc-
tive definitions, coming from different domains and never
brought together before, in a uniform framework. Our anal-
ysis confirms the power of fixpoint theory for abstract for-
malization, but also points to a key distinguishing factor: the
construction space, the set of objects that serve as approxi-
mations of the object being defined. We propose the general
term monotone constructive definitions for a class of defi-
nitions that includes recursive and inductive definitions and

developed a framework that clearly emphasises how differ-
ent types of definitions can be classified according to dif-
ferent types of construction spaces. This is a crucial step
towards the development of knowledge representation lan-
guages that include a variety of constructive definitions. Our
framework suggests such language requires a formal syn-
tax for definitions such that one can automatically and uni-
formly derive a suitable exact space, semantic operator and
construction space. As shown by the examples, while the
first two are straightforward, the latter may be non-trivial.
We have illustrated different types of definitions by exam-
ple, allowing us to handpick the most convenient, natural
construction space. The challenge is that a uniformly derived
construction space needs to be strong enough to handle all
considered definitions, and the defined object should coin-
cide with the one obtained with the handpicked construc-
tion space.7 This paper offers an important first step towards
solving this issue by classifying different types of defini-
tions based on the kind of construction space they require.
This means identifying the correct type of definition will be
an essential part of the syntax of the considered knowledge
representation language.

By no means do we claim our list of types of construc-
tive definitions to be exhaustive. Other types of construc-
tive definitions not considered here are nested inductive and
coinductive definitions where multiple objects are defined
in a hierarchy of inductive and coinductive definitions (Si-
mon et al. 2006; Paulson 2000) or non-monotone “iterated”
inductive definitions which have been researched in mathe-
matical logic (Feferman 1970; Martin-Löf 1971; Buchholz
et al. 1981). In iterated inductive definitions, e.g., over a
well-founded order, multiple objects are defined in terms of
other defined objects on a lower or equal level. Once all ob-
jects on some level are well-defined, their values can be used
to derive the value of any object on a higher level. This is
the natural principle of stratification. It has been argued that
this principle is implemented by the well-founded semantics
of logic programming (Denecker, Bruynooghe, and Marek
2001; Denecker and Ternovska 2008; Denecker and Ven-
nekens 2014). Thus, the declarative logic underlying logic
programming can be seen as a logic of this type of construc-
tive definition.

In this paper, we focused on monotone constructive defini-
tions. Non-monotone inductive definitions have been studied
intensively, including in a fixpoint-theoretic setting (known
as Approximation Fixpoint Theory (AFT) (Denecker, Marek,
and Truszczyński 2000)). In the terminology of the current
paper, dealing with this non-monotonicity requires switch-
ing to a different construction space (a space of approx-
imations). A natural next question we wish to tackle is
whether this framework can also be of use for studying non-
monotone recursive definitions.

As a final remark, we argued that constructive defini-
tions are an important form of human knowledge. Of course,

7In the supplementary material of the appendices, the suitable
notion of isomorphism between construction spaces is introduced
allowing to relate operators and defined objects in different con-
struction spaces.



many other types of knowledge are important as well. Con-
trary to the languages of logic and functional programming,
which support mainly definitions used as programs, expres-
sive KR languages should offer language constructs for ex-
pressing a broad range of knowledge. In this respect, an ex-
ample is the logic FO(·), which extends FO with among oth-
ers an expressive rule-based language construct for defini-
tional knowledge, inspired by logic programming (Denecker
2000; De Cat et al. 2018).
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Technical Appendix: Proofs
In this section, we collect the proofs that have been omitted
from the main paper due to space limitations.

First, we present the proofs of the formal statements con-
tained in the prose of the main paper8. In particular, for each
example of (co)inductive definitions of sets, we prove that
the semantic operator is monotone. The fact that the chosen
construction space is a cpo is trivial: the power set of any
set together with the subset or the superset order is clearly
a complete lattice, thus a cpo. For every other example il-
lustrated in the main paper, we show both that the proposed
construction space is a cpo and that the semantic operator on
it is monotone.

Algebraic Formalisation of Constructive
Definitions
In this section, we included just one example, namely the
one concerning the transitive closure of a graph G = (V,E).

Proposition 1. OF is a monotone operator.

Proof. Let S1 ⊆ S2 be two subsets of V 2. We have to show
that OF (S1) ⊆ OF (S2). By definition of OF , we have that
OF (S1) = E∪{(x, y) | ∃z : (x, z) ∈ S1∧(z, y) ∈ S1}. Let
(x, y) ∈ OF (S1). If (x, y) ∈ E, then (x, y) ∈ OF (S2). If
(x, y) /∈ E, then there exists z ∈ V such that (x, z), (z, y) ∈
S1. Since S1 ⊆ S2, (x, y) ∈ OF (S2), as desired.

Different Flavours of Constructive Definitions
(Co)inductive Definitions of Sets Let us take a closer
look at three examples concerning the definition of differ-
ent sets of lists of prime numbers: prime arrays, prime lists
and prime streams. Recall that we denote by P the set of
prime natural numbers.

Proposition 2. The operator OPA is monotone.
8Each result is contained in a subsection with the same title as

the section of the main paper which it refers to.

Proof. Let S1 ⊆ S2 be two subsets of List , and let l ∈
OPA(S1). Either l = Nil , in which case x ∈ OPA(S2), or
there exist x ∈ P and y ∈ S1 such that l = [x | y]. Since
S1 ⊆ S2, we have y ∈ S2, which implies that x ∈ OPA(S2)
also for the latter case.

Proposition 3. The operator OPL is monotone.

Proof. Clear by the defintion of OPL and Proposition 2.

Proposition 4. The operator OPS is monotone.

Proof. Let S1 ⊆ S2 be two subsets of List , and let l ∈
OPS (S1), i.e. l = [y, z] for some y ∈ P and z ∈ S1. Since
S1 ⊆ S2, we have y ∈ S2, which implies that x ∈ OPS (S2),
as desired.

The last example of the section regards the company
control-relation. Recall that we denote by C the set of com-
panies.

Proposition 5. The operator OCont is monotone.

Proof. Let S1 ⊆ S2 be two subsets of C2, and let (x, y) ∈
OCont(S1), i.e. ∑

z∈{x}∪{u|(x,u)∈S1}

Sh(z, y) > 0.5.

Since S1 ⊆ S2, we also have the inclusion {x} ∪ {u |
(x, u) ∈ S1} ⊆ {x} ∪ {u | (x, u) ∈ S2}. Since Sh(z, w) ≥
0 for all (z, w) ∈ C2, we have∑

z∈{x}∪{u|(x,u)∈S2}

Sh(z, y) > 0.5,

i.e. (x, y) ∈ OCont(S2).

(Co)recursive Definitions of Functions The first exam-
ple regards the recursive definition of the Fibonacci function
Fib : N → N. Before proving that the chosen construction
space is a cpo, we show a simple yet useful intermediate re-
sult.

Lemma 1. ⟨N⊥,≤⟩ is a cpo.

Proof. Let S ⊆ N⊥ be a chain. By the definition of the
order≤, S has at most two elements. Hence, the lub(S) = n
where {n} = S ∩ N if S ∩ N ̸= ∅, or ⊥ otherwise.

Proposition 6. CFib is a cpo.

Proof. Let S ⊆ CFib be a chain. Since the order ≤d is de-
fined pointwise, for all n ∈ N, Sn := {f(n) | f ∈ S} ⊆ N⊥
is a chain. By Lemma 1, for all n ∈ N, there exists lub(Sn).
It is easy to see that the function F : N → N⊥ defined by
F (n) := lub(Sn) is the least upper bound of S.

Proposition 7. The operator OFib is monotone.



Proof. Let f, g ∈ CFib such that f ≤d g, i.e. for all n ∈ N,
f(n) ≤ g(n). Notice that we have

OFib(f)(0) = 0 = OFib(g)(0)

OFib(f)(1) = 1 = OFib(g)(1)

∀n ∈ N \ {0, 1}, OFib(f)(n) = f(n− 1) + f(n− 2)

≤ g(n− 1) + g(n− 2)

= OFib(g)(n).

Hence, OFib(f) ≤d OFib(g), as desired.

Now we move on to the recursive definition of the Ack-
ermann function Ack : N2 → N. The proof of the fact that
the construction space CAck is a cpo analogous to the proof
of Proposition 6, given that ⟨N⊥ × N⊥,≤d⟩ is a cpo, which
follows easily from Lemma 1. Hence, it remains to show that
the semantic operator is monotone.

Proposition 8. The operator OAck is monotone.

Proof. Let f, g ∈ CAck such that f ≤d g. Then we have

∀y ∈ N⊥, OAck (f)(0, y) = y + 1 = OAck (g)(0, y),

OAck (f)(⊥, 0) = f(⊥,0) ≤d g(⊥, 0) = OAck (g)(⊥, 0),
∀x ∈ N \ {⊥, 0}, OAck (f)(x, 0) = f(x− 1, 0)

≤d g(x− 1, 0) = OAck (g)(x, 0).

Moreover, for all x, y ∈ N⊥,

OAck (f)(x+ 1, y + 1) = f(x, f(x+ 1, y))

≤d f(x, g(x+ 1, y))

≤d g(x, g(x+ 1, y))

= OAck (g)(x+ 1, y + 1),

where the first inequality holds by the monotonicity of f .
Hence, OAck (f) ≤d OAck (g), as desired.

Next, we presented the example regarding the corecorsive
definition of the Co-Fibonacci function co Fib : N2 → List .
Instead of showing that Cco Fib is a cpo, and the operator
Oco Fib is monotone, we prove the analogous results for the
generalization contained in the last example of the section
on (co)recursive definitions. First, we prove an intermediate
result.

Lemma 2. ⟨Listo,≥d⟩ is a cpo.

Proof. Let S ⊆ Listo be a chain. We have to show that S
has a least upper bound. If S has finite cardinality, the claim
is trivial. Suppose S has an infinite number of elements. By
the definition of ≥d and since S is a chain, if S contains
an infinite list l, then l is the least upper bound of S. Sup-
pose otherwise, i.e. all elements in S are finite lists of natural
numbers or finite lists of natural numbers ending with o. We
denote the length of a list l ∈ S by length(l) ∈ N. We can
order the lists in S following the total order, and we denote
by li the i-th list in S with such ordering, i.e. i1 ≤ i2 if and
only if li1 ≤ li2 . Notice that if length(li) = length(li+1),
then li must end with o and li+1 with a natural number. In
particular, length(li+2) is strictly greater than length(li).
Let l ∈ S be a list and n ≤ length(l), we denote by ln

the n-th element of l We define an infinite list L := [Lj ]j∈N
where

∀j ∈ N : Lj := l2j+2
length(l2j+2)−1.

Notice that, for all i ∈ N, the first
min(length(li), length(li+1)) − 1 elements of li and
li+1 coincide. Hence, it is not hard to see that for any l ∈ S
we have l ≥d L by construction. Let U be an upper bound
for S, i.e. U is an infinite sequence of natural numbers such
that l ≥d U for all l ∈ S. By the definition of the order,
for all l ∈ S, the first length(l) − 1 elements of l and U
coincide. Hence, it is easy to see that L = S. In particular,
L is the least upper bound of S.

Definitions with Custom-Designed cpo’s Finally, the last
example concerns the definition of the controlled shares
function Csh : C2 → [0, 1], where we denote by C the set
of companies.
Proposition 9. CCsh is a cpo.

Proof. Since ([0, 1],≤) is a cpo, the proof is analogous to
the proof of Proposition 6.

Proposition 10. The operator OCsh is monotone.

Proof. Let f, g : C2 → [0, 1] such that f ≤L g. In partic-
ular, for all x ∈ C, we have {u | f(x, u) > 0, 5} ⊆ {u |
g(x, u) > 0, 5}. Since Sh(z, y) ≥ 0 for all z, y ∈ C, we
have OCsh(f) ≤L OCsh(g), as desired.

Technical Appendix: Construction Spaces
In this last section, we expand on what was briefly discussed
in Section 4 of the main paper, regarding the uniform deriva-
tion of the construction spaces.

In each of the proposed examples, we were able to hand-
pick the respective construction spaces. Even though our
choices were rather natural and sensible, it is clear that
sometimes the definitions can be evaluated equivalently in
other cpo’s. E.g., all the proposed examples of inductive def-
initions can be defined by their respective immediate conse-
quence operator, well-known in the domain of logic pro-
gramming. This operator is defined on a space of Herbrand
structures of the program, which is not exactly the smallest
cpo. Nevertheless, when defining logics or declarative lan-
guages for expressing some type of constructive definition,
the formal semantics of the logic should uniformally spec-
ify construction space and operator for infinitely many con-
structive definitions expressible in the logic, over a whole
range of domains.

In the following, we show a way to relate different con-
struction spaces. First, let us recall a few basic definitions.
Definition 1. A function ψ : P1 → P2 between partially
ordered sets is a morphism of partially ordered sets if it pre-
serves the ordering, i.e. for all x, y ∈ P1 such that x ≤P1

y,
f(x) ≤P2

f(y).
Definition 2. A function ψ : C1 → C2 between cpo’s is a
morphism of cpo’s if it is a morphism of partially ordered
sets that preserves the least upper bounds of chains, i.e., for
all chains C ⊆ C1, f(lub(C)) = lub(f(C)).



Definition 3. An embedding ψ : C1 ↪→ C2 of cpo’s is a mor-
phism of cpo’s that is an isomoprhism onto its image.

Suppose now that two cpo’s C1 and C2 are given, each
with a respective monotone operator defined on it. If there
exists an embedding between the given cpo’s such that it
commutes with the operators, then the least fixpoint of one
operator is mapped by the embedding to the least fixpoint of
the other. We express this formally as follows.

Proposition 11. Let ψ : C1 ↪→ C2 be an embedding of cpo’s,
and O1 and O2 be monotone operators on C1 and C2, re-
spectively. If O2(ψ(x)) = ψ(O1(x)) for all x ∈ C1, then
lfp(O2) = ψ(lfp(O1)).

Proof. Since ψ preserves the least upper bounds of chains,
ψ(⊥C1) = ⊥C2 . Moreover, since both O1 and O2 are mono-
tone, we have that

lfp(O1) = lim
n→∞

On
1 (⊥C1) = sup{On

1 (⊥C1) : n ≥ 0}

lfp(O2) = lim
n→∞

On
2 (⊥C2) = sup{On

2 (⊥C2) : n ≥ 0}.

Hence,

ψ(lfp(O1)) = ψ(sup{On
1 (⊥C1

) : n ≥ 0})
= sup{ψ(On

1 (⊥C1)) : n ≥ 0}
= sup{On

2 (ψ(⊥C1
)) : n ≥ 0}

= sup{On
2 (⊥C2

) : n ≥ 0}
= lfp(O2),

where the equality in the second line holds because f pre-
serves the least upper bounds of chains.

Proposition 11 gives us some insight into how the con-
struction spaces and the semantic operators relate to others.
In particular, we can prove the following corollary.

First, let D and E be the defined object and the exact
space of a constructive definition, respectively. Moreover,
supposeO1 : C1 → C1 is a fixpoint formalization of the defi-
nition considered, i.e. C1 is a cpo equipped with an injection
θ1 : E → 2C1 sending distinct elements of E to disjoint sets;
and O1 is a monotone operator such that lfp(O1) ∈ θ1(D).
If we can embed the construction space C1 into another cpo
C2, and such embedding commutes with O1 and another
monotone operator O2 : C2 → C2, then O2 provides another
fixpoint formalization for the considered definition.

Corollary 1. Let ψ : C1 ↪→ C2 be an embedding of cpo’s. If
O2 : C2 → C2 is a monotone operator such thatO2(ψ(x)) =
ψ(O1(x)) for all x ∈ C1, then there exists an injection
θ2 : E → 2C2 sending distinct elements of E to disjoint sets,
such that lfp(O2) ∈ θ2(D).

Proof. We can define a function θ2 : E → 2C2 by send-
ing e ∈ E to the set {ψ(c) | c ∈ θ1(e)}. Clearly, θ2
sends different elements to disjoint sets (and it is hence in-
jective): θ1 sends different elements of E to disjoint sets,
and they indeed stay disjoint after applying ψ on their el-
ements because ψ is an embedding. By Proposition 11, we
have lfp(O2) = ψ(lfp(O1)). Since lfp(O1) ∈ θ1(D), we
get lfp(O2) ∈ {ψ(d) | d ∈ θ1(D)} = θ2(D).

This result can be useful in defining semantics for defini-
tion logics, where the construction space and the operator of
a formal definition expressed in the logic, need to be derived
uniformly. We leave further investigation for future work.


