
Partial Boolean Functions for QBF Semantics

Allen Van Gelder

Computer Science Dept., SOE–3, Univ. of California,
Santa Cruz, CA 95064,

avg@cs.ucsc.edu

Abstract

Long-distance resolution for quantified boolean formula
(QBF) solving was introduced in 2002 by Zhang and Malik,
but has been controversial for the following decade, because
it derives and uses tautologous clauses. Balabanov and Jiang
(2012) gave a set of proof rules (called LDQ-resolution)
that include long-distance resolution with conditions, but
did not attach any “meaning” (i.e., semantic interpretation)
to the derived tautologous clauses. Egly, Lonsing and Widl
(2013) showed that the QBF certificate extraction algorithm
of Goutltiaeva, Van Gelder and Bacchus (2011) could be
applied with correct results to LDQ refutations. These results
and others have brought LDQ-resolution back into the main-
stream. This paper introduces partial boolean functions (pbfs)
and develops a semantic interpretation for universal literals
in QBF clauses. It develops LDP-resolutioni, which is refu-
tationally complete for QBF formulas in prenex conjunction
normal form (PCNF). LDP-resolution is shown to derive only
logical consequences.

1 Introduction

Quantified boolean formulas (QBFs) provide a natural ex-
pression of many AI problems on finite domains, such as
planning, hypothetical reasoning, counterfactual reasoning,
game analysis, quantified constraint satisfaction, and various
forms of verification. Practical tools for QBF reasoning are
of interest and value in a variety of constraint-satisfaction
problems.

Long-distance resolution for quantified boolean formula
(QBF) solving (see Section 2 for definitions) was introduced
more than a decade ago [23], but has been controversial
for the following decade, because it derives and uses tau-
tologous clauses. Balabanov and Jiang gave a set of proof
rules (called LDQ-resolution) that include long-distance res-
olution with conditions [2]. They claimed that any LDQ-
resolution refutation can be transformed into a Q-resolution
refutation. Further work showed that LDQ-resolution can
be implemented efficiently in a search-based QBF solver
and may generate exponentially shorter refutations than Q-
resolution on a certain family of formulas [8]. Peitl et al.
[15] showed that it may be combined with the standard de-
pendency scheme [17, 13]. Beyersdorff and Blinkhorn used
the idea of fully exhibiting model trees to show that it may be
combined with the RRS dependency scheme [3]. Blinkhorn

and Beyersdorff showed that combining formula restriction
with the RRS dependency scheme can exponentially shorten
refutations in a variant of a well-studied QBF family, even
without long-distance resolution [5].

None of this work addressed the question of whether
clauses or similar formulas derived by these proof systems
were logical consequences of the original QBF; they only
considered whether derived formulas preserved the truth
value of a closed QBF. A derived formula is a logical con-
sequence of an original formula if conjoining the derived
formula with the original formula does not reduce the set of
model trees.

Definition 1 We say a system is strategy sound if it only
derives logical consequences of the original formula. The
qualifier “strategy” is included because many papers con-
sider a system to be “sound” if it does not return an incorrect
truth value. That is, only one bit of the output is considered
important.

It is known in the literature that the Q-resolution proof
system, dating from 1995, derives only logical conse-
quences. Recent years have seen the introduction of several
QBF proof systems that might have exponentially shorter
refutations than are possible with Q-resolution on certain
formula families. This paper introduces partial boolean
functions (pbfs) and develops a semantic interpretation for
universal literals in QBF clauses based on pbfs. A special
case of pbfs is described, called partial Herbrand functions
(phfs). It introduces a long-distance resolution system using
phfs called LDP-resolution that is “strategy sound,” i.e., it
derives only logical consequences of the original QBF for-
mula. LDP applies to QBF formulas in prenex conjunction
normal form (PCNF).

It is then shown that some well known systems may derive
formulas that are not logical consequences, although they do
not change the truth value of the entire original formula.

The importance of this distinction becomes apparent if
the original formula is a subformula in the overall logic
for a large project: A logical consequence may be added to
the original subformula without changing its set of model
trees, and may be useful in its own right in other parts
of the project. It further demonstrates that universal reduc-
tions based on several more aggressive dependency schemes
found in the literature [22, 20], even without any form of

long-distance resolution, lead to derived clauses that are not
necessarily logical consequences.

QBF can be formulated as a decidable fragment of full
first-order logic. Future work may include study of other
decidable fragments to see if partial Herbrand functions or
partial Skolem functions have a useful role as replacements
for total functions. For example, Samer has considered quan-
tified constraint-satisfaction problems in which variables
take values in finite domains [16].

2 Basic Definitions and Notation
This paper uses standard notation as much as possible, but
contains many specific definitions and notations that are
used throughout the paper. Page limits force us to assume
that the reader is familiar with the common definitions re-
lated to QBFs in the literature.

This paper uses capitalized Greek letters Ψ, Φ, and Θ to
denote QBFs. We use 0 and 1 for truth values of literals and
use true and false for semantic values of formulas.

We follow certain notational conventions for boolean vari-
ables and literals (signed variables) to make reading easier:
Lowercase letters near the beginning of the alphabet (e.g.,
b, c, d, e) denote existential literals, while lowercase letters
near the end of the alphabet (e.g., u, v, w, x) denote univer-
sal literals, while middle letters (e.g., p, q, r) are of ambigu-
ous quantifier type. Quantifier types are implied frequently
throughout the paper without restating this convention.

In contexts where a literal is expected, p might denote
a positive or negative literal, while p denotes the negation
of p. To emphasize that p stands for a variable, rather than
a literal, the notation |p| is used. Clauses may be written
as [p, q, r]); [] denotes the empty clause; [1] denotes an
existentially tautologous clause.

For this paper we require the original QBF (to be solved)
to be closed (i.e., with no free variables), in prenex con-
junctive normal form (PCNF), and have a matrix of non-
tautologous original clauses that are completely reduced,
which means that every universal literal in the clause that
is inner to every existential literal in the same clause is re-
moved. Derived formulas may be in a slightly more general
prenex form.

Perhaps the most constructive way to think of QBF se-
mantics is as a two-player game between the E-player,
who sets existential variables, and the A-player, who sets
universal variables. Repeatedly, the outermost unset variable
in the prenex is set to 0 or 1 by the appropriate player. The
E-player tries to make the matrix eventually evaluate to true,
which requires every clause to be satisfied, whereas the A-
player tries to make the matrix eventually evaluate to false,
which is accomplished by some clause being falsified.

Practical proof systems focus on proving that the A-player
has a winning strategy for the original QBF Φ, which is
synonymous with Φ being false. When the A-player needs to
choose a value for an outermost unset universal variable u,
the values of all existential variables outer to u have been set.
Therefore the choice made by the A-player can be thought of
as a boolean function of these outer existential variables, say
u(e1, e2, . . .). Such functions are called Herbrand func-
tions for u.

A winning A-strategy is a complete set of Herbrand func-
tions, one for each universal variable, such that setting the
universal variables according to these functions during a
play of the game ensures that Φ evaluates to false no matter
how the E-player chooses. Now suppose each occurrence
of a universal variable u in the matrix of Φ is replaced
by the corresponding Herbrand function u(e1, e2, . . .). The
resulting Φ has entirely existential variables and is false if
and only if it is unsatisfiable.

Historically, Herbrand functions are total boolean func-
tions but in practice partial functions are often sufficient to
specify a winning A-strategy. This paper introduces a theory
based on partial boolean functions and partial Herbrand
functions that avoids certain logical problems that arise
when total Herbrand functions are used. Several technical
definitions are needed.

Definition 2 For this paper the prenex is totally ordered.
The qdepth, or scope, of a variable is its alternation depth,
with 1 outermost. Notations: p ≺ q means qdepth(p) <
qdepth(q); p � q means qdepth(p) ≤ qdepth(q); p ≺≺ q
means p precedes q in the totally ordered prenex.

A few special operations involving a set of literals S are

defined, assuming the prenex
−→
Q is known by the context.

exist(S) = {the existential literals in S} (1)

univ(S) = {the universal literals in S} (2)

(S ≺ q) = {the literals in S outer to q} (3)

(q ≺ S) = {the literals in S inner to q} (4)

Depending on context, S might be a clause, a prenex, a
partial assignment, or other logical expression.

Definition 3 A prenex-ordered assignment is a total as-
signment that is represented by a sequence of literals that
are assigned 1 and are in prenex order.

A strategy for the E-player can be represented as an E-
assignment tree, which we now describe. (See also [18, 19]).
We say that a branch is a path from the root node to some
leaf node, represented as a sequence of tree edges, which are
labeled with a prenex-ordered assignment.

Although it seems artificial at first, it is very useful to
represent a tree as the nonempty set of its branches. A
branch prefix is a path (sequence of edges) from the root
node that might terminate before reaching a leaf. The same
branch prefix can occur in many branches, and represents a
tree node; the empty branch prefix is the tree root.

Definition 4 Let a QBF Φ =
−→
Q.F be given, with k =

|univ(Φ)|. An E-assignment tree T for Φ is a set of exactly
2k prenex-ordered assignments for Φ that defines a tree and
satisfies these constraints on branching:

1. Let (σ, e) denote a branch prefix in T . Then no branch of
T has the prefix (σ, e).

2. Let (σ, u) denote a branch prefix in T . Then some branch
of T has the prefix (σ, u).

A model tree M for Φ is an E-assignment tree in which
each branch τ makes F true, i.e., τ |= F in the usual
propositional sense.

Although the wording is different, if M is a model tree by
this definition, it is also a model tree by definitions found in
other papers [19]. Every model tree M represents a winning
E-strategy in the obvious way.

Definition 5 Departing from the CNF formalism, we denote
the if-then-else boolean operator on three parameters (or
gate with three inputs) by ite(C, T, F). Here C, T , and F
are themselves boolean formulas. For any partial assignment
τ :

if C⌈τ= 1, then ite(C, T, F)⌈τ= T ⌈τ ;
if C⌈τ= 0, then ite(C, T, F)⌈τ= F ⌈τ .

See Definition 12 for abbreviated forms of ite denoted by
if (C, T) and cp(T).

The ite operator is basic to many programming languages
and is popular for circuit design, due to nice properties.
For example, it can simulate unary and binary boolean
formulas, e.g., (A ∧ B) ≡ ite(A, B, 0), xor(A, B) ≡
ite(A, ¬(B), B), et al. It is famous as the foundation for bi-
nary decision diagrams (BDDs) developed in the pioneering
work of Bryant [6]. Recently it has played a prominent role
in works on QBF [7, 11]. For this paper, ite and its formula-
tion in terms of restriction are important for the development
of partial Herbrand functions in derived clauses.

We assume the reader is familiar with the Q-resolution
proof system, with two operations, resolution and uni-
versal reduction. Q-resolution is refutationally complete
[KBKF95], but not inferentially complete. That is, Φ |= C
might hold for a clause C, yet neither C nor a clause that
subsumes C is derivable by Q-resolution. Also, Q-resolution
prohibits derivation of a tautologous clause.

Definition 6 Resolution is defined as usual for proposi-
tional clauses, but the notation used is more specific than
usual, to facilitate analysis of proofs. Let clauses C1 =
[p, α] and C2 = [p, β], where α and β are (possibly
empty) literal sequences containing neither p nor p . Then
the resolvent is: resp(C1, C2) = α ∪ β.

Variable |p| and its literals are called the clashing vari-
able and clashing literals. Note that the second operand is
always the clause that contains p. This paper considers only
existential clashing literals, but considers proof systems that
permit tautologous resolvents under certain conditions.

Definition 7 A universal literal u is said to be tailing in a
clause C if its qdepth is greater than that of any existential
literal in C, i.e., (u ≺ exist(C)) = ∅.

Universal reduction removes tailing universal literals
from clauses. If u is tailing in C3 = [α, u], then the reduced
clause is: unrdu(C3) = α.

In addition unrd∗(C3) denotes the completely reduced
clause that results from applying unrd successively on all
tailing universal literals in C3.

Lemma 8 Resolution and universal reduction are strategy-
sound operations.

Proof: Straightforward application of the definitions.

Definition 9 We now define an extension of resolution that
makes it a total function so that operations in a resolution
proof remain well defined after a restriction is applied to
the leaf clauses [21, 9].. As with Q-resolution, the clashing

literal is required to be existential. To distinguish from stan-
dard resolution we call the new operator total resolution and
denote it as “trex”.

As a technicality, the clause [?] means disallowed
operands, and should never occur. Also [1] represents a
clause with the literal 1 in it, due to a restriction; it is treated
as the widest possible clause and always evaluates to true.
If normal resolution is defined, trex is the same. The other
cases are summarized next.

If the clashing literal is present in one operand and not
the other, and neither operand is [1], the resolvent is the
operand without a clashing literal. If one operand is [1] and
the other contains its clashing literal, or both operands are
[1], the resolvent is [1]. If one operand is [1] and the other
lacks its clashing literal, the other clause is the resolvent.
Finally, if both operands are regular clauses that lack their
clashing literal, the clause with fewer literals becomes the
resolvent; ties are broken by some deterministic procedure.
These cases explain the importance of specifying the clash-
ing literal in the notation.

Lemma 10 If D = trexp(C1, C2), then

resp (C1⌈τ , C2⌈τ) ⊆ D⌈τ . (5)

Proof: Straightforward application of the definitions.

2.1 Boolean If-Then-Else

Definition 11 Departing from the CNF formalism, we de-
note the if-then-else boolean operator on three parameters
(or gate with three inputs) by ite(C, T, F). Here C, T ,
and F are themselves boolean formulas. For any partial
assignment τ :

if C⌈τ= 1, then ite(C, T, F)⌈τ= T ⌈τ ;
if C⌈τ= 0, then ite(C, T, F)⌈τ= F ⌈τ .

This operator is basic to many programming languages
and is popular for circuit design, due to nice properties.
For example, it can simulate unary and binary boolean
formulas, e.g., (A ∧ B) ≡ ite(A, B, 0), xor(A, B) ≡
ite(A, ¬(B), B), et al. It is famous as the foundation for
binary decision diagrams (BDDs) developed in the pioneer-
ing work of Bryant [6]. Recently it has played a prominent
role in works on QBF [7, 11].

The ite operator has several implementations using two-
parameter boolean operators, but it is often most natural as
a three-parameter operator. Well known representations in
DNF and CNF are:

DNF: ite(C, T, F) ≡ (C ∧ T) ∨ (¬(C) ∧ F) (6)

CNF: ite(C, T, F) ≡ (¬(C) ∨ T) ∧ (C ∨ F). (7)

3 Partial Boolean Functions

This section introduces partial boolean functions, which
play a central role in the interpretation of QBF derivations.
For this discussion, let V be a fixed nonempty set of k
propositional variables: V = {qi | 1 ≤ i ≤ k}.

Recall that the mathematical definition of a boolean func-
tion F on V is a (k + 1)-ary relation (i.e., set of rows)
in which each total assignment τ to the variables of V
appears in the first k columns of exactly one row of F , and

q1 q2 q3 F1

1 0 0 1
1 0 1 1

q1 q2 q3 G1

0 0 0 0
1 0 0 0

q1 q2 q3 G2

0 0 0 0
1 0 1 1

Figure 1: Pbfs discussed in Example 14.

F (τ) appears in column (k + 1), called the output column.
This relation has 2k rows and is often called a truth table.
Although this seems like a cumbersome way to represent
a function it is the natural lead-in to partial functions. For
example, set operations like union and intersection are not
useful on total functions because the result is not a function
except in trivial cases. However, these operations prove to
be very useful on partial functions.

Definition 12 A partial boolean function (pbf) on V is a
(not necessarily proper) subset of the rows of some total
boolean function on V. The empty pbf has no rows and is
denoted by ♦. With some abuse of notation we also write
♦ for the “value” of a pbf at total assignments that do not
correspond to any row in the pbf.

We use the ite abbreviations if (C, T) = ite(C, T, ♦) and
cp(T) = if (1, T).

Two pbfs F and G are said to be consistent if the union of
their rows is a pbf; that is, there is no total assignment τ such
that F (τ) = 0 and G(τ) = 1, or vice versa. Consistency
extends to sets of pbfs in the natural way.

Definition 13 Restriction on a pbf (or total boolean func-
tion) f defined over a set of variables V is denoted as f⌈σ
and can be defined as an operation on the relation that
defines f , as follows: In general σ is a partial assignment to
V, represented as an ordered set of literals, p1, . . . , pm. It
suffices to describe the operation for m = 1, as the complete
restriction is the same as applying it one variable at a time.
So, let σ = (p), a single literal with |p| ∈ V and let column
j in the relational table for f represent |p|. (1) If p is the
positive literal of |p|, let f0 be the selection of all rows of
f in which column j is 1; if p is the negative literal select
the rows of f that have 0 in column j. (2) Let f1 be a copy
of f0 except that all the entries in column j are inverted. (3)
Then f⌈p= (f0∪f1). Actually, the union is disjoint and this
relation is called the cylindrification of f0.

Thus, in our terminology, f⌈σ is defined on the same set
of variables as f , although its value is independent of the
values of variables assigned by σ.

Example 14 Let V = {q1, q2, q3}; Let F = (q1 ∧ ¬(q2))
and G = (q2 ∨ q3) be total boolean functions. The relational
tables for three pbfs are shown in Figure 1, where F1 is a
pbf of F and G1 and G2 are pbfs of G. Note that F1 and
G1 are not consistent, whereas F1 and G2 are consistent.

Of course, G1 and G2 must be consistent, because they are
subsets of the same total function.

Example 15 Let V = {q1, q2, q3}. Let F = (q1 ∧ ¬(q2))
and let G = (q2 ∨ q3), and let pbfs F1, G1, and G2 be
as discussed in Example 14 and shown in Figure 1. Then
(F1)⌈q1= ♦. Restrictions on q1 are shown in Figure 2.
The standard definition of restriction (Definition 13) gives
F ⌈q1= ¬(q2) and G⌈q1= G.

Lemma 16 Let F be a pbf defined on V and let G be an
extension of F to a total boolean function. Let σ be a partial
assignment on V. Then G⌈σ is a total boolean function, and
it is an extension of F ⌈σ.

Definition 17 Boolean operators can be extended to accept
partial boolean functions (pbfs) as parameters. The input
pbfs should all be defined on the same set of propositional
variables V. The idea is that for every extension of the
input pbfs to total boolean functions the output should be
an extension of the output pbf on the same V.

The main idea is that for a boolean operator whose pa-
rameters are pbfs instead of total functions, the output is
defined for an assignment σ if and only if the input pbfs have
sufficient known information at σ so that only one output
value is possible no matter how the input pbfs are extended
to total functions.

Most identities for unary and binary boolean operators are
obvious, such as ¬(♦) ≡ ♦, (1 ∧ ♦) ≡ ♦, (0 ∧ ♦) ≡ 0,
(1 ∨ ♦) ≡ 1, (0 ∨ ♦) ≡ ♦, etc.

Some cases where the output of the ternary oper-
ator ite is defined may not be immediately obvious:

ite(♦, 0, 0) ≡ 0, and
ite(♦, 1, 1) ≡ 1.

See the technical appendix for

detailed treatment.

The restriction operator can be applied to pbfs with the
same rules as for total boolean functions; that is, if G is an
extension of pbf F to a total boolean function, then G⌈σ is
an extension of F ⌈σ. This can be shown by straightforward
induction.

Other cases are easily evaluated from these examples.

4 Syntax of LDP-Resolution

The term long-distance resolution was coined by Zhang and
Malik [23] for resolution that accepted pairs of complemen-
tary universal literals in its resolvents. Balabanov and Jiang
gave a precise condition for allowing long-distance resolu-
tion [2]. We call operations that satisfy their conditions LD-
resolution. What they call LDQ-resolution consists of LD-
resolution and universal reduction. This section introduces
LDP-resolution, an operation that integrates long-distance
resolution with partial Herbrand functions.

Definition 18 A mixed variable in a clause is a universal
variable with both positive and negative literals in the same
clause. (We simply list both literals on the mixed variable.)

Definition 19 This paper uses a form of nonclausal resolu-
tion, which a generalization of propositional clause resolu-
tion due to Manna and Waldinger [14]. We use the following

q1 q2 q3 (F1)⌈q1
0 0 0 1
0 0 1 1
1 0 0 1
1 0 1 1

q1 q2 q3 (G1)⌈q1
0 0 0 0
1 0 0 0

q1 q2 q3 (G2)⌈q1
0 0 1 1
1 0 1 1

Figure 2: Restrictions on pbfs discussed in Example 15.

specific notation:

rese(F0, F1) = F0⌈e∨F1⌈e (8)

The clausal case has e ∈ F0 and e ∈ F1. For this paper
e and e are always existential literals, called the clashing
literals. Note that the second operand is always the clause
that contains e.

The general case is only useful if the resolvent is not
tautologously true, F0⌈e properly subsumes F0 and F1⌈e
properly subsumes F1; otherwise the resolvent is weaker
than an operand.

A logically equivalent definition is:

rese(F0, F1) = ite(e, F0, F1) (9)

This is clear from Definition 11 and shows that the resolvent
expressions do not actually depend on e.

Definition 20 The LDP-resolution criteria apply when the
operands are QBF clauses and the resolvent contains u and
u . Say the clashing variable was |e|. We say |u| is a mixed
variable. Unlike most papers, we do not “merge” such com-
plementary pairs, for reasons explained in Section 4. LDP
permits mixed |u| in a resolvent if (A) all u-literals came
from a single resolution operand, or if (B) (|e| ≺ |u|) holds,
i.e., |e| is outer to |u| in the prenex. (see Definition 2). Mixed
existential variables are never permitted.

It is not useful to regard LDP resolvents (or LD resol-
vents) with mixed variables as logical formulas because they
are tautolous; their value lies in using them as a notation in
solver implementations [23].

5 Partial Herbrand Functions

The intuitive meaning of partial Herbrand functions (phfs)
are at the core of LDP methodology. We explain this before
proceeding to the technical definitions. We have an original

closed PCNF Φ =
−→
Q.F and possibly some derived clauses.

For clause C ∈ F and a universal literal u ∈ C, the A-player
(trying to falsify some clause) thinks:

The value of literal u matters for C only if the assign-
ment to existential literals outer to u (call it τ) falsifies
(exist(C) ≺ u), and then the useful value is u = 0.

(10)
This explains the base definitions

phf (u, C) =

{

0 if all literals in (exist(C) ≺ u)
are assigned 0

♦ otherwise.
(11)

If u is a negative literal, i.e., |u| ; then phf (u, C) tells when
variable |u| should be 1.

The “intended meaning” of phf (u, C) in (10) is gener-
alized in a natural way by the phfs of derived clauses, but
now with the goal to detect whether the value of u matters
to the A-player anywhere in the proof of a derived clause
D. For this purpose we may restrict attention to the support
of D, which we denote as G. Let M be any model tree for

Ψ =
−→
Q.G. The analogous goal of the A-player is to show

that some branch of M , call it τ , falsifies D. If such τ exists
in M , it shows D is not a logical consequence of Ψ.

Two kinds of partial Herbrand functions (phfs) are defined
for LDP-resolution. The definitions depend implicitly on
the original formula Φ. To avoid excessive verbiage we use
“phf” to refer to either phf () or phfm(). The name phf
indicates that the first parameter is a universal literal and
the output is 0 or ♦.

The name phfm indicates that the first parameter is a
universal variable (v in (12) below), and the output is 0, 1,
or ♦. Although phfms are not part of any LDP derivation,
they facilitate verifying that a derivation of the empty clause
is correct, which is considered important in some circles.

In all cases phfm is defined naturally in terms of phf as
follows:

phfm(v, D) = (¬phf (v , D) ∪ phf (v, D)) . (12)

Recall that “∪” is not the same as “or” for pbfs. It is easily
shown that “∪” is consistent in Eq. (12) in all the cases of
Definition 21 where it is used, below. Note that phfm(v, D)
is not defined recursively.

Phfs for derived clauses are defined recursively in terms of
the operand(s) of the proof operation that derived the clause.
For any form of universal reduction on v, the phf is copied
from the operand if |v| 6= |u|, or is ♦ if |u| itself is being
reduced.

The general formula for phfs of resolvents, where D =
rese(D0, D1), is:

phf (u, D) = ite(e, phf (u, D0), phf (u, D1)) (13)

where u may be a postive or negative literal. Then compute
phfm(|u|, D) with Eq. (12). Some of the phfs in an ite may
be ♦.

An important identity for all resolution cases is:

phf (u, D) ≡ phf (u, D0)⌈e∨phf (u, D1)⌈e . (14)

This shows that phf (u, D) does not actually depend on the
clashing literal e, although the ite operands in Eq. 13 do.
Therefore it does not matter if u ≺ e; the phf only depends
on existential variables outer to u, as required for Herbrand
functions.

It is important to remember that in the examples a pair
of literals u, u is shorthand for the pbf (phf (u, D) ∪

phf (u, D)), which must be consistent because the only
boolean value taken by phfs is 0. In implementations, a pair
of pointers to the phfs probably suffices.

Resolution simplifies in several special cases, detailed be-
low. The complicated cases are when u is mixed in D and/or
when D was derived by LDS-resolution with a clashing
variable e such that u ≺ e but indep(u, e) holds.

Definition 21 Let D = rese(D0, D1). For each universal
variable |u| ∈ vars(D):

1. If |e| depends on |u| (i.e., |u| ≺ |e| and indep(|u|, |e|)
does not hold), and literals on |u| occur in only one
operand, then the phfs in the operands cannot depend on
e. Copy the phfs of the operand that contains literals on
|u|. This includes the case that |u| is mixed. One of the
phfs is ♦ unless |u| is mixed. The phfm may use Eq. (12),
but it will be the same as in the operand that had the
literals on |u|.

2. If |u| ≺ |e| and u occurs in both operands, then |u| cannot
be mixed, and

phf (u, D) = (phf (u, D0) ∩ phf (u, D1)) (15)

because 0 ∨ ♦ = ♦. Then compute phfm(|u|, D) with
Eq. (12).

3. If |e| ≺ u and u occurs in only one operand, then copy
the phfs and phfm of that operand. This includes the case
that |u| is mixed.

4. If |e| ≺ u and u occurs in both operands, and u is not
mixed in D, then phf (u, D) is given by Eq. 13. One of
the phfs in the ite may be ♦. Then compute phfm(|u|, D)
with Eq. (12).

5. If |e| ≺ |u| and |u| is mixed in D, then phf (u, D)
is given by Eq. 13. Then compute phfm(|u|, D) with
Eq. (12). Some of the phfs in an ite may be ♦.

6 Logical Implications in QBF Derivations

This section considers the logical properties of derivations
from closed PCNFs. The main result of this section is
Theorem 24, which states that LDP-resolution derives only
logical consequences; it follows from the more technical
Lemma 23. We begin with a helpful definition.

Definition 22 Let ΠD be an LDP-resolution derivation of
clause D from Φ. Let τ be a prenex-ordered assignment for
Φ. Then τ is said to effectively falsify D if: (1) For each
literal p ∈ D that is not mixed, τ(p) = 0 (p may be universal
or existential). (2) For each mixed universal variable v ∈
vars(D), define σ(v) to be the subset of τ that assigns values
to existential variables outer to v. Then phf (v, D)⌈σ(v)= ♦
or τ(v) = phfm(v, D)⌈σ(v).

That is, τ assigns the variable v the value obtained by
evaluating phfm(v, D) at the point (exist(τ) ≺ v) if that
value is defined. If phfm(v, D)⌈σ(v)= ♦, then either value

for τ(v) allows τ to effectively falsify D.

Lemma 23 Let clause D be derived by LDP-resolution (see

Definition 4) from an original QBF Φ =
−→
Q.F . Let SD

be the support of D in ΠD, that is, the clauses used in its

derivation. Let T be an E-assignment tree for Φ such that
some branch τ ∈ T effectively falsifies D. Then there is
some branch τf ∈ T that falsifies some original clause
Cj ∈ SD.

Proof: (Sketch) Adopt the method of Goultiaeva et al.
[9] for extracting certificates (see also [21]).

Theorem 24 Any non-tautologous clause D derived by

LDP-resolution from PCNF Φ =
−→
Q.F is logically implied

by Φ.
Proof: (Sketch) Contrapositive of Lemma 23.

Corollary 25 If PCNF Φ has an LDP-resolution refutation,
then Φ = false.

7 Conclusion

The proof system LDP-resolution was introduced and shown
to derive only logical consequences, when the derived clause
has no mixed phfs. It uses a novel version of long-distance
resolution with partial Herbrand functions to avoid tau-
tologous universal literals. Certain aggressive dependency
schemes are shown in Appendix B to derive clauses that are
not logical consequences in some cases.

Future work should develop more integration of QBF
reasoning with applications. More than a one-bit result is
needed in practice. Incremental formulas have been produc-
tive in the propositional domain.

Partial Herbrand functions and partial Skolem functions
might be useful other fragments of first-order logic. Quanti-
fied constraint satisfaction problems in which variables have
finite domains are one possibility. Modeling procedurally
defined functions with preconditions is another possibility,
such as first and rest in Common Lisp, which require
a non-empty list for their parameter.

A Logical Operators on Pbfs

Boolean operators can be extended to accept partial boolean
functions (pbfs) as parameters. The input pbfs should all be
defined on the same set of propositional variables V. The
idea is that for every extension of the input pbfs to total
boolean functions the output should be an extension of the
output pbf on the same V.

Definition 26 Let V be a fixed nonempty set of k propo-
sitional variables. Let op be an m-ary boolean operator (m
may be 0) with parameters Pi, 1 ≤ i ≤ m, where the Pi are
pbfs on V. Then op(P1, . . . , Pm) is the pbf P on V defined
as follows:

For each total assignment σ on V there is a b ∈ {0, 1}
such that the following two statements are equivalent:

1. For every extension of Pi to a total boolean function on
V, call it Fi,

op(F1(σ), . . . , Fm(σ)) = b.

2. P contains exactly one row of the form (σ, b).

In other words, P (σ) is defined if any only if the input
pbfs have sufficient known information at σ to determine
the output of op at σ.

It suffices to consider the cases that one or more operands
are the empty pbf ♦. Also we adopt the convention that an
output value of ♦ means there is no matching row in the
output pbf. The following relationships are straightforward
applications of Definition 26:

cp(♦) ≡ ♦ (16)

¬(♦) ≡ ♦ (17)

∧

1≤i≤m (Pi(σ)) =

{

0 if some Pi(σ) = 0;
1 if every Pi(σ) = 1;
♦ otherwise.

(18)

∨

1≤i≤m (Pi(σ)) =

{

1 if at least one Pi(σ) = 1;
0 if every Pi(σ) = 0;
♦ otherwise.

(19)

Also, xor(♦, P) ≡ ♦ for all pbfs P .
The extension of ite and other operators on three or more

parameters requires care. By application of Definition 26:

ite(♦, 0, 0) = 0 (20)

ite(♦, 1, 1) = 1 (21)

However, use of the DNF in (6) fails to give (21), and use
of the CNF in (7) fails to give (20). The solution is to close
a CNF that represents the operator on total boolean func-
tions under resolution (see Definition 27 below). The next
theorem shows that the resulting CNF correctly represents
the corresponding operator on pbfs. Closure of a DNF under
consensus (also called term resolution) accomplishes the
same thing by a similar argument.

Definition 27 A propositional CNF F = {Cj} is said to
be closed under resolution if for every pair of resolvable
clauses Ci ∈ F and Cj ∈ F , The resolvent is either
tautologous or is subsumed by a clause already in F . A
propositional DNF G =

∧

j (Tj) is said to be closed under

consensus if for every pair of resolvable terms Ti ∈ G

and Tj ∈ G, The consensus is either contradictory or is

subsumed by a term already in G.

Theorem 28 Let V be a fixed nonempty set of k proposi-
tional variables. Let the boolean operator op(P1, . . . , Pm)
be defined or represented for total boolean functions on V
as parameters by a propositional CNF F that treats the Pi as
boolean variables and has no other variables. We abbreviate
{Pi | 1 ≤ i ≤ m} to {Pi}. Then F represents the corre-
ponding operator for pbfs on V as parameters (as defined
in Definition 26) if and only if F is closed under resolution.

Proof: (⇒) Assume for purposes of contradiction that
F is not closed under resolution. There is some non-
tautologous clause D = resp(Ci, Cj) such that Ci ∈ F ,
Cj ∈ F , and D is not subsumed by any clause in F . Con-
sider the partial assignment on {Pi} defined by σ = ¬(D).
Treat σ as a pbf on {Pi} (i.e., every variable not assigned
by σ is ♦). Every extension of σ to a total assignment τ on
{Pi} causes F⌈τ= 0 (because either Ci⌈τ= 0 or Cj⌈τ= 0),
so F(σ) should be 0. However, every clause C ∈ F contains
a literal not mentioned in σ (or D would be subsumed), so
C(σ) = ♦ or C(σ) = 1 by (19). In particular, Ci(σ) = ♦
and Cj(σ) = ♦, so F(σ) = ♦ by (18). This contradicts the
hypothesis that F represents op for pbfs.
(⇐) By hypothesis, F is closed under resolution. Let σ be

a partial assignment on {Pi} and let τ range over extensions
of σ to total assignments on {Pi}. If there is some Cj ∈ F
such that Cj⌈σ 6= 1, then there is some τ such that Cj⌈τ= 0.
Therefore, if op(τ) = 1 for all τ , then op(σ) = 1.

Now assume op(τ) = 0 for all τ . It remains to show that
op(σ) = 0. This is immediate if Cj⌈σ= 0 for any Cj ∈ F ,
so assume this is not the case. Define:

G = {Cj | Cj ∈ F and Cj⌈σ= ♦} . (22)

If G has no clauses, op(σ) must be 1, contradicting the hy-
pothesis that all op(τ) = 0, so assume G has some clauses.
In this case G⌈σ must be unsatisfiable or else there would
be some total extension τ that satisfies G and also satisifies
F . Let Π be a resolution refutation of G⌈σ . Removing the
restriction converts Π to a resolution derivation on G of some
clause D ⊆ ¬(σ). But D is also derivable from F , which is
closed under resolution. Therefore some Cj ∈ F subsumes
D, and Cj⌈σ= 0, so op(σ) = 0.

Corollary 29 Let V be a fixed nonempty set of k proposi-
tional variables. Let the boolean operator op(P1, . . . , Pm)
be defined or represented for total boolean functions on V
as parameters by a propositional DNF G that treats the Pi as
boolean variables and has no other variables. We abbreviate
{Pi | 1 ≤ i ≤ m} to {Pi}. Then G represents the correpond-
ing operator for pbfs on V as parameters (as defined in
Definition 26) if and only if G is closed under consensus
(also called term resolution).

Proof: Define F = ¬(G) and apply Theorem 28 to F .

Corollary 30 Let V be a fixed nonempty set of k proposi-
tional variables. Let C, T , F be pbfs on V. Then

ite(C, T, F) ≡ [¬(C), T] ∧ [C, F] ∧ [T, F] (23)

ite(C, T, F) ≡ (C ∧ T) ∨ (¬(C) ∧ F) ∨ (T ∧ F)(24)

ite(♦, T, F) ≡ (T ∩ F) (25)

Note that the rightmost clause in (23) and the rightmost term
in (24) have no effect when C is a total boolean function.

B Derivations That Are Not Logical

Consequences

Slivovsky and Szeider [20] define the reflexive resolution-
path dependency scheme (denoted Drrs in that paper). A
universal literal u is called rrs-tailing if no existential lit-
eral in the same clause depends on it in the rrs scheme.
Such universal literals are deleted from that clause. That
paper shows that Q-resolution with universal reductions
based on rrs-tailing is refutationally sound. The rrs scheme
is strictly more aggressive than the standard dependency
scheme (Dstd) that was introduced and studied theoretically
in the pioneering work of Samer and Szeider [17] so refu-
tational soundness of Q-resolution with universal reductions
based on std-tailing is a corollary.1

More aggressive dependency schemes such as Samer’s
generalized triangle dependencies [16], strict standard de-
pendencies [22], and reflexive resolution-path dependencies
[20] may derive clauses that are not logically implied by Φ.
A counter-example with four clauses shows that universal
reduction can delete some model trees.

Example 31 Let Φ =
−→
Q.F be given in chart form:

Φ ∃ b ∃ c ∀u ∃ f ∃ g
C1 c u f
C2 b u g

C3 b f
C4 c g

M1 :

u f g

b c ————

u f g

M2 :

u f g

b c ————

u f g

Two of several model trees are M1 and M2 as shown above.
Clauses D1 =

[

b, c
]

and D2 = [b, c] are derivable by Q-
resolution, so they are logically implied by Φ. Under the
standard dependency scheme f and g depend on u, so the
only independence is that implied by the prenex order.

In the more aggressive dependency schemes mentioned
above, f and g are independent of u. Under these schemes
D3 = [b, g] and D4 = [c, f] are derivable by universal
reduction from C2 and C1, respectively. Adding D3 and D4

to Φ is safe (its truth-value does not change); M1 is still
a model tree. However, M2 is not a model tree for either
Φ+D3 or Φ+D4,2 so neither is a logical consequence.

References

[1] Balabanov, V., Jiang, J.H., Janota, M., Widl, M.: Ef-
ficient extraction of QBF (counter)models from long-
distance resolution proofs. In: Proc. AAAI. pp. 3694–
3701 (2015)

1The expression “D1 is more aggressive than D2” means that
the independence found by D1 is a superset of that found by D2.

2Φ+D abbreviates
−→
Q. (F ∪D).

[2] Balabanov, V., Jiang, J.R.: Unified QBF certification
and its applications. Formal Methods in System Design
41, 45–65 (2012)

[3] Beyersdorff, O., Blinkhorn, J.: Dependency schemes in
QBF calculi: Semantics and soundness. In: Proc. CP,
LNCS 9892. pp. 96–112. Springer (2016)

[4] Bjorner, N., Janota, M., Klieber, W.: On conflicts and
strategies in QBF. In: LPAR-20 (2015)

[5] Blinkhorn, J., Beyersdorff, O.: Shortening QBF proofs
with dependency schemes. In: Proc. SAT, LNCS
10491. pp. 263–280. Springer (2017)

[6] Bryant, R.: Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computers
C-35(8), 677–691 (Aug 1986)

[7] Bubeck, U., Kleine Büning, H.: Nested boolean func-
tions as models for quantified boolean formulas. In:
Proc. SAT 2013, LNCS 7962, pp. 267–275. Springer
(2013)

[8] Egly, U., Lonsing, F., Widl, M.: Long-distance res-
olution: Proof generation and strategy extraction in
search-based QBF solving. In: LPAR, LNCS 8312. pp.
291–308 (2013)

[9] Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform
approach for generating proofs and strategies for both
true and false QBF formulas. In: Proc. IJCAI (2011)

[10] Janota, M., Chew, L., Beyersdorff, O.: On unifica-
tion of QBF resolution-based calculi. In: Proc. MFCS,
LNCS 8635. pp. 81–93 (2014)

[11] Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.:
Solving QBF with free variables. In: Proc. CP, LNCS
8124. pp. 415–431. Springer (2013)

[KBKF95] H. Kleine Büning, M. Karpinski, and A. Flögel.
Resolution for quantified boolean formulas. Informa-
tion and Computation, 117:12–18, 1995.

[13] Lonsing, F., Biere, A.: Integrating dependency
schemes in search-based QBF solvers. In: SAT. pp.
158–171. Springer (2010)

[14] Manna, Z., Waldinger, R.: A deductive approach to
program synthesis. TOPLAS 2, 90–121 (1980)

[15] Peitl, T., Slivovsky, F., Szeider, S.: Long distance q-
resolution with dependency schemes. In: Proc. SAT
(2016)

[16] Samer, M.: Variable dependencies of quantified CSPs.
In: LPAR, LNCS 5330. pp. 512–527 (2008)

[17] Samer, M., Szeider, S.: Backdoor sets of quantified
boolean formulas. JAR 42, 77–97 (2009)

[18] Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing
QBF. In: Proc. CP 2006 (LNCS 4204). pp. 514–529
(2006)

[19] Samulowitz, H., Bacchus, F.: Dynamically partitioning
for solving QBF. In: Theory and Applications of Sat-
isfiability Testing (SAT). pp. 215–229 (2007)

[20] Slivovsky, F., Szeider, S.: Soundness of Q-resolution
with dependency schemes. Th. Comp. Sci. 612, 83–
101 (2016)

[21] Van Gelder, A.: Input distance and lower bounds for
propositional resolution proof length. In: Theory and
Applications of Satisfiability Testing (SAT) (2005)

[22] Van Gelder, A.: Variable independence and resolution
paths for quantified boolean formulas. In: Proc. CP
(LNCS 6876). pp. 789–803. Springer, Perugia, Italy
(2011)

[23] Zhang, L., Malik, S.: Conflict driven learning in a
quantified boolean satisfiability solver. In: Proc. IC-
CAD. pp. 442–449 (2002)

