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Abstract

The quality of components produced through additive manu-
facturing processes, such as selective laser melting (SLM), is
significantly influenced by heat transfer phenomena. Numer-
ical simulations have emerged as valuable tools for gaining
a deeper understanding of these processes. Deep investiga-
tion is made possible by a large amount of sensor data in this
area. Both offers the potential to reduce the cost and time
associated with empirical experimentation. Physics-informed
neural networks (PINNs) combine the data-driven capabili-
ties of deep neural networks with the mathematical formu-
lations of physical laws, such as heat diffusion. In particu-
lar, the gap between numerical simulations and data observa-
tions can be bridged. In this paper, we present a novel neural
diffusion graph convolutional network (NDGCN) designed
to reveal physically interpretable parameters and accurately
predict heat transfer dynamics during the SLM process. Our
methodology involves representing the fabricated part as a
graph model, constructed from high-dimensional data. This
facilitates the integration of complex geometries and thermal
properties into our predictive framework.

Introduction
SLM has emerged as a transformative technology in additive
manufacturing, enabling the fabrication of intricate com-
ponents with unprecedented precision. However, the qual-
ity of SLM-produced parts is profoundly influenced by the
dynamic interplay of circulating heating and cooling pro-
cesses. Undesirable thermomechanical distortions, porosity,
and cracks are often caused by local and global overheat-
ing or rapid cooling. To this end, a thorough understanding
of heat transfer phenomena is required to optimize manu-
facturing results.In the pursuit of such understanding, math-
ematical foundations have played a central role. A partial
differential equation (PDE) is used for modeling heat diffu-
sion. These equation provide a rigorous framework for com-
prehending the underlying physics of heat transfer. Nonethe-
less, there exists a challenge: the disparities between numer-
ical analysis based on these equation and real-world obser-
vations obtained from sensors. Furthermore, the collection
of comprehensive data of an entire component in the compli-
cated SLM process proves to be impossible. Traditional ther-
mal imagers can only capture surface temperatures, leaving
the dynamics of the building’s interior largely undetected.

To address these challenges, PINNs have emerged as a pow-
erful tool by harmonizing data-driven modeling with the
heat diffusion PDE. This fusion of data-driven and physics-
based approaches not only expedites the training process but
also extends our ability to predict heat transfer behaviors
within SLM, even in areas devoid of sensor data. Building on
the success of neural networks, Graph Convolutional Neu-
ral Networks (GCNs) have demonstrated remarkable predic-
tive capabilities in various applications involving large-scale
data relationships. Intriguingly, the mathematical descrip-
tion of GCNs functionality closely aligns with the structure
of the explicit Euler method, offering a promising avenue
for knowledge transfer. In this paper, we propose a tailored
NDGCN. It is designed to model discretized temperature
fields within a built part as node features, facilitating pre-
dictions of heat transfer during additive manufacturing. Ad-
ditionally, we explore the incorporation of different regular-
ization techniques based on the knowledge of heat transfer
properties to enhance training efficiency and accuracy. To
the best of our knowledge, this work represents the first ap-
plication of a NDGCN in the context of SLM for heat trans-
fer prediction. We make an important contribution to this as
follows:

• We introduce a NDGCN for the discovery of physically
interpretable parameters and the prediction of tempera-
ture fields using real measurement data.

• Our approach is benchmarked against numerical simula-
tions employing the finite volume method (FVM) and a
PINN solution.

• We show that the stability of the learning algorithm can
be improved using heat transport properties in the form
of control loss functions.

This paper is organized in the following manner. Related
work that serves as a foundation for this paper is presented
in Section 2. Section 3 is a benchmark of the approach in
terms of learning physical parameters and in comparison to
other methods. This includes a FVM solution and a PINN
solution. Section 4 describes the dataintegration. A summary
and discussion is given in section 5.



Related Work
Numerical Analysis and PINNs
Numerical analysis are indispensable in scientific and en-
gineering research. These methods are particularly valu-
able when analytical solutions are either infeasible or non-
existent due to the complexity of the underlying physics,
such as the heat transfer in SLM. The state of the art for
approximately solve PDEs are the finite difference method,
FVM, and the finite element method. T Mukherjee et al.
presented a pioneering work for simulating heat transfer
and fluid flow in AM using the FVM (Mukherjee et al.
2018b)(Mukherjee et al. 2018a). PINNs represent a recent
innovation at the intersection of machine learning and nu-
merical simulations. For SLM processes involving highly
physical interactions, obtaining sufficient data to train ac-
curate machine learning models can be prohibitively expen-
sive, time-consuming, or even impossible. Traditional data-
driven methods such as deep learning often struggle with
data scarcity because they rely on large data sets for ef-
fective generalization. PINNs offer an elegant solution to
this problem by seamlessly incorporating domain-specific
knowledge of heat transfer into neural network architectures.
Raissi et al. has laid the foundation for this area of research
and for much of the successful work of the past few years
(Raissi, Perdikaris, and Karniadakis 2019). A comprehen-
sive overview of PINNs in heat transfer problems is given by
Cai et al. (Cai et al. 2021). Uhrich et al. are given a heat fore-
casting on a built part in AM using simplified 2-dimensional
PINN models (Uhrich et al. 2023b). A multi-model, physics-
informed machine learning approach based on thermal and
grayscale image analysis is presented by Bauer et al. (Bauer
et al. 2023).

Differential equation Inspired Neural Networks
Deep Neural Networks are often seen as complex ”black
boxes,” making it challenging to understand their inner
workings, despite their primary goal of learning patterns
in data. This lack of transparency makes it difficult to as-
sess a neural network’s suitability for a specific task, often
requiring trial and error. Additionally, the unpredictability
of trained models in real-world situations adds complexity,
causing concerns about their stability, robustness, and relia-
bility. For this purpose, Weinan was the first author to intro-
duce the bridge between deep residual networks (Resnets)
(He et al. 2016) and ODEs (E 2017). The use of ODE-
inspired network design for single image super-resolution
is given by He et al.. The authors proposed several net-
work architectures based on Runge-Kutta methods (He et al.
2019). An ODE transformer network is recently presented
by Khoshsirat and Kambhamettu (Khoshsirat and Kamb-
hamettu 2023). Ruthotto and Haber are given more specific
DNN architectures that are motivated by PDEs. The founda-
tion for the network design are the different classes of PDEs
(Ruthotto and Haber 2020). Alt et al. has also presented the
transfer of the rich set of numerical foundations from PDEs
to DNNs (Alt et al. 2023). Shen et al. extend the explicit
forward Euler method with the implicit backward counter-
part and present a neural network for single image dehazing

inspired by implicit Euler ODEs in their work (Shen et al.
2020). Uhrich et al. showed how to predict valve failure us-
ing a neural network inspired by mathematical formulations
of the operation of an electrodynamic valve (Uhrich et al.
2023a).

Neural Diffusion Graph Networks
A novel approach that views deep learning on graphs as
a continuous diffusion process and interprets Graph Neu-
ral Networks as discrete approximations of an underlying
partial differential equation (PDE) is introduced by Cham-
berlain et al.. They addresses challenges commonly faced
by graph learning models, such as depth, oversmoothing,
and bottlenecks, while ensuring stability with respect to
data perturbations in both implicit and explicit discretization
schemes. The authors develop linear and nonlinear versions
of GRAND, which demonstrate competitive performance
on various standard graph benchmarks (Chamberlain et al.
2021). Two interesting applications of such approaches are
climate modeling and stream water temperature prediction,
presented by Choi et al. and Jia et al., respectively (Choi
et al. 2023)(Jia et al. 2023).

Methodology and Benchmarking
Methodology NDGCN
A Graph data structure are a collection of vertices and edges
G = (V,E), V = {1, . . . , N}, E ⊆ V × V . Vertex dis-
tances d are described by the euclidean distance of vertex po-
sitions p(v) ∈ R3. For simplicity, a cubic mesh graph with
equidistant vertices is used for benchmarking, as shown in
Figure 1. Heat diffusion processes in SLM can be described
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Figure 1: Potential Cubic Mesh - Vertices and edges are
equidistant

by the heat equation:

Ṫ (x, t) =
κ(T (x, t))

c(T (x, t))ρ
∆T + q,

(1)
(x1, x2, x3) ∈ Ω, t ∈ [0, T ]

Here κ describes the thermal conductivity, c is the specific
heat, q is the heat flux and ρ is the density. To approximate
a given initial boundary value problem on a graph model, a



NDGCN is described in the following explicit scheme using
forward time difference:

Tn+1 = Tn + δt
κ(Tn)

c(Tn)ρ
LTn + δtqn (2)

The vertices of the graph represents temperature features T :
V × [0, τ) → R and the edges are weighted ω(v1, v2, t) :
V × V × [0, τ), where w = κ

ρc . L represents the laplacian
matrix, which is a discretized form of the laplace operator:

L = A−D (3)

where A is the adjacency matrix, containing the connectiv-
ity between adjacent vertices, and D is the diagonal degree
matrix, i.e. the matrix that has as the i-th diagonal element,
the sum of the entries in the i-th row of A. Due to the equal
distribution of all vertices and edges, the trainable weights
can be equated with the physical parameters κ(T ) and c(T ).
The timesteps are equivalent to the number of layers in the
NDGCN. The initial condition and Dirichlet boundary is for-
mulized in the following manner:

T (t0, x) = T0, (x1, x2, x3) ∈ Ω (4)

T (t, x) = TB, (x1, x2, x3) ∈ Ω, t ∈ [0, T ] (5)
The Neumann Boundary is defined by the gaussian heat flux
q of the energy source across the top surface:

κ
∂T

∂n
= q, (x1, x2) ∈ ΩS (6)

q =
2Ap

πr2b
exp

(
2(r0 − vt)2

r2b

)
(7)

with r0 = (x1b

4 , x2b

2 )
where p is the laser power, xb and yb are the distance from
the laser beam axis, rb is the radius of the laser, and A is the
absorption of the laser energy. v is the scanning velocity.

Figure 2: Simplicial Complex - created from a helix-shaped
point cloud, using SID-based pruning, Delaunay triangula-
tion and restriction to the interior of the alpha shape

Benchmark
The performance of the approach to identify the physical pa-
rameters of 316L stainless steel is evaluated to benchmark
the NDGCN model.The approach relies on utilizing the nu-
merical solution of the boundaries as training data, in par-
ticular for the upper boundary. The training of the NDGCN

Table 1: Thermal and mechanical properties

Properties
Laser Power P 250 W
Ambient Temperature T0 293.15 K
Density ρ 0.6 · 7800 kg/m3

Thermal conductivity κ 7.092
+0.636× 10−2 T

W/(m K)
Identified thermal conductivity κ 8.436

+0.219× 10−2 T)
W/(m K)

Specific heat c 330.9 + 0.563T
-4.015× 10−4 T2

+9.465× 10−8 T3

J/(kg K)
Idendified specific heat c 319.15 + 0.676T

−2.285× 10−3 T2

J(kg K)
Absorption of the laser energy A 9× 10−2

Laser Beam Radius r 1.4× 104m

model is guided by a loss function designed to incorporate
Dirichlet boundary conditions, a crucial aspect in accurately
modeling physical systems. This loss function serves as the
driving force for training the model, ensuring it captures the
essential physics of the problem:

L =
1

Nv

Nv−1∑
i=0

(TB(t
i, xi)− Tpred(t

i, xi))2 (8)

where Nv are the number of vertices on the boundaries. Fig-
ure 3 visually demonstrates the efficacy of the NDGCN ap-
proach in reproducing the solutions obtained through FVM
approximation and PINN solution. The successful reproduc-
tion of these solutions highlights the robustness and accu-
racy of the model. Figure 4 provides further insight into
the capabilities of the NDGCN approach. It showcases that
the model can predict heat transfer patterns within the con-
structed part without the need for additional data. The train-
able parameters of the NDGCN model are physically inter-
pretable, as shown in TABLE 1. The trainable weights are
modelled as parameters of the specific heat and thermal con-
ductivity.

Data Integration
An arbitrary spatial structure can be approximately de-
scribed using a simplicial 3-complex. For each layer in a
printing job, the objective is to represent the partial object
printed up to that point, by a simplicial complex, such that
a) the shape of the complex closely resembles the shape of
the part, and b) the dynamics of the heat distribution in the
part can be modeled by a diffusion process on the underly-
ing graph, i.e. the graph whose vertices and edges are given
by the 0- and 1-simplices in the complex. Thermal images
of the surface are taken periodically during the printing pro-
cess. The shape of each layer of the part can be detected
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Figure 3: Heat Transfer Prediction - The predicted solution of the NDGCN is compared with the FVM and a PINN solution
as a baseline. The NDGCN approach is able to reproduce the PINN and FVM solution

from these images. Stacking this information for all layers,
we obtain a 3-dimensional model of the object.

Graph Construction from Thermal Images
We associate the pixels of a thermal image with points on a
plane in R3, that is parallel to the (x, y)-plane and contains
the current layer of the printing job. A point is assumed to be
part of the printed object, if the value of the associated pixel
is above the melting temperature of the metal powder. If this
is the case, the point is added to a point cloud in R3, giving
the pixel coordinates a third component for the height of the
layer. A representative subset needs to be selected from the
composite point cloud to build the simplicial complex. To
this end, we make use of the pruning method described in
(Kurz, Holoch, and Biber 2021), that iteratively removes the
point with the highest scale-invariant density (SID). Since
the data comes from R3 instead of a plane, we adapt the SID,
by replacing the r-density with the 3-dimensional analogue:

dr(vi) =
#{∥vj − vi∥ < r : 1 ≤ j ≤ N, i ̸= j}

4
3πr

3
(9)

Which is the number of data points in the r-ball around vi,
divided by the volume of the ball. The scale-invariant den-
sity is defined as the integral over all r-densities:

d(vi) =

∫ ∞

0

dr(vi)dr (10)

and by a similar calculation as in (Kurz, Holoch, and Biber
2021), we see that:

d(vi) =
(8
3
π
)−1∑

j ̸=i

∥vi − vj∥−2 (11)

In each step, the point with the highest spatial redundancy
(measured by the SID) is removed. The resulting subset is
relatively homogeneously distributed over the interior of the
point cloud, but contains many boundary points, as their sur-
rounding is partially void, resulting in a lower SID. This
is desirable, as the boundary points define the shape of the

printed object. For building the graphs representing the par-
tially printed object, we iterate over the number of layers
n, ranging from 1 to the total number N of layers in the
printing job. For each n, the pruned set of points from the
previous step is considered together with the points from the
n-th layer. We restrict pruning to points from the top k layers
(k ≪ N ), thus the representation for the first n − k layers
is inherited. A simplicial complex is constructed from the
set of pruned points, using Delaunay triangulation (Chen
and Xu 2004). The printed part must not necessarily be con-
vex, but the shape produced by the Delaunay triangulation
always is. To extract only the simplices that are within the
boundary of the printed part, we use an alpha shape (Edels-
brunner and Mücke 1994) to determine the hull of the point
cloud. Removing the simplices that are not encased by the
alpha shape, we end up with a simplicial 3-complex that re-
sembles the shape of our printed object (see Figure 2). The
vertices and edges of this complex are used to define a graph.
The vertices are categorized based on spatial position:

1. vertices in the lowest layer are assigned to the bottom
boundary class

2. vertices in the surface layer are assigned to the top
boundary class

3. vertices that are part of a surface of the alpha shape, but
neither in the top- nor bottom boundary are assigned to
the side boundary class

4. vertices that are not part of either of these classes are
assigned to the interior class

Ci = C(vi) denotes the class of the vertex vi, i = 1, . . . N .

Modelling Internal Heat using Graph Diffusion
Due to non-equidistant vertices in the graph and a random
laser trajectory in the 3D printing process, we propose a
more complex model to predict the heat transfer based on
real measurement data. Revisiting (1), we simplify notation
by expressing the conductivity term κ

cρ as a single parameter
α:

Ṫ (x, t) = α
(
T (x, t)

)
∆T (x, t)− q

(
x, T (x, t)

)
(12)
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results are compared against the PINN solution

For a discrete approximation of the heat process on a graph,
we replace the Laplacian ∆ with the Graph Laplacian L (3).(

LT
)
(vi, t) =

∑
vj∼vi

aijT (vj , t)−
( ∑
vj∼vi

aij

)
T (vi, t)

=
∑
vj∼vi

aij
(
T (vj , t)− T (vi, t)

)
(13)

As a result, we obtain the diffusion equation on the graph:

Ṫ (t) =α
(
T (vi, t)

)(
LT
)
(t)− q

(
vi, T (vi, t)

)
=
∑
vj∼vi

(
α
(
T (vi, t)

)
aij

(
T (vj , t)− T (vi, t)

))
− q
(
vi, T (vi, t)

)
(14)

This equation can be rewritten using a state-dependent ad-
jacency A(T ) =

(
α
(
T (vi, t)

)
· aij

)
i,j

, and L(T ) accord-

ingly, to get:

Ṫ = L(T )T − q
(
T
)

(15)

Here T is a vector of temperature values and q is a vector-
valued function.
Let cij(T ) denote the entries of A(T ). We assume that cij
only depends on the temperature of the vertices it connects,
i.e. cij(T ) = cij(Ti, Tj). Furthermore, cij should not de-
pend on the specific vertices vi, vj , but only on their local
properties, i.e.
1. their distance ϱij = ∥vi − vj∥2
2. the vertex classes C(vi), C(vj)
3. the scale-invariant densities d(vi), d(vj)
Under these assumptions, there is some function φ, mod-
elling the connectivity of adjacent nodes:

cij(T ) = φ(ϱij , Ti, Tj , Ci, Cj , di, dj) (16)

In a similar fashion, the i-th entry of the dissipation vector
q(T ) =

(
qi(T )

)
i

should only depend on the local properties
of vi, i.e. Ti, Ci, di. This implies that there is some function
ψ, s.t.:

qi(T ) = ψ(Ti, Ci, di) (17)

For the neural diffusion model, the functions φ, ψ are ap-
proximated by single-hidden-layer networks, and L, q are
composed by the evaluations of these models.
We propose a NDGCN model for predicting the temperature
change over discrete time-steps for arbitrary graphs, defined
by the equation:

Tn+1 = Tn +

( k∑
j=1

Θj
(
δtL(Tn)

)j(
Tn − δt

2
q(Tn)

))
− δt · q(Tn) (18)

This model contains the trainable submodels φ,ψ determin-
ing L and q, as well as the trainable parameters Θj , which
define a graph convolution. The model equation (18) is moti-
vated by the Taylor series for a solution of the homogeneous
heat equation:

T (t+ δt) =

∞∑
j=0

1

j!

((
∂

∂t

)j
T

)(
t
)
(δt)j

= T (t) +

∞∑
j=1

1

j!

((
∂

∂t

)j
T

)(
t
)
(δt)j

Note that for a solution of the homogeneous heat equation,
its derivative w.r.t. t is again a solution of the heat equation,
since 0 = ∂

∂t

(
Ṫ − α∆T

)
= T̈ − α∆Ṫ . Hence, we can

replace
(
∂
∂t

)j
by (α∆)j in the Taylor series. Approximating

α∆ by L(T ), we obtain:

T (t+ δt) ≈ T (t) +

∞∑
j=1

1

j!

(
L(T )jT

) (
t
)
(δt)j

The model equation (18) is derived from this by evaluating
the first k terms of the series, accounting for the inhomo-
geneity due to dissipation, and relaxing the fixed coefficients
1/j! to trainable parameters.
Training this kind of model entails several practical chal-
lenges: First, using the model to predict changes in surface
temperature, requires knowing the initial state T0 for all ver-
tices, including those that cannot be observed. Additionally,



the limited observability of vertices likely leads to an under-
determined optimization problem, which raises doubts about
the model’s ability to accurately represent the internal heat
state. Finally, the model’s locality means that vertices be-
yond a certain distance from the surface (namely, k steps
in the graph) do not directly influence the observations, and
thus are not tracked by the learning algorithm.
To address the first problem, the initial state T0 is con-
structed by iterative model predictions for each layer, start-
ing from the first layer, where all vertices can be observed.
However, this requires a relatively well-trained model in the
first place. To resolve this circular dependency, we start by
training the model on just the first two layers, and then grad-
ually increase the number of layers when the model has
learned a good prediction for the current depth. For control-
ling the other problems, we rely on regularizing loss func-
tions, that are motivated by known properties of heat con-
duction and enforce those properties on the model predic-
tions.
First, we ensure that the relative magnitude of the convo-
lution parameters is consistent with the derivation from the
Taylor series, using the loss term:

LΘ =

k∑
j=1

(
Θjj!

Θ1
− 1

)2

(19)

For the connectivity model φ, it is known from the dis-
cretization of the continuous Laplace, that the connectivity
of two adjacent vertices should be proportional to the inverse
square of their distance, ϱ−2

ij . Assuming φ(ϱij) = τϱ−2
ij

(keeping all other parameters constant), it follows φ′(ϱij) =

−2τϱ−3
ij , and thus φ′(ϱij)

φ(ϱij)
= −2ϱ−1

ij , which is independent
of the scale τ . Therefore, the second regularizing loss term
is given by:

Lφ =
∑
i,j:i∼j

(
φ′(ϱij)

φ(ϱij)
−
(
− 2ϱ−1

ij

))2

(20)

which ensures consistency of the edge weights with the dis-
tances of the connected vertices. Furthermore, dissipation
can only occur at the boundary, so ψ = 0 is required for
interior points, motivating the loss:

Lψ =
∑

i: Ci=int.

ψ(Ti, Ci, di)
2 (21)

Using knowledge from the theoretical study of PDEs, it
is also possible to make statements about the temporal
evolution of the heat state. First, the total thermal energy
in the body can only change because of dissipation, thus∑
i Tn+1(i) =

∑
i

(
Tn(i)− qn(i)

)
. Therefore, a loss func-

tion is proposed:

Lheat =

(∑
i

(
Tn+1(i)− Tn(i) + qn(i)

))2

(22)

Another well known property of the evolution of heat dis-
tribution is the maximum principle (see for example (Evans

2022), §2.3.). For our purpose, it suggests that the temper-
ature at a vertex is within the range given by the minimum
and maximum over its previous temperature and the temper-
atures of connected vertices. This is expressed by the regu-
larizing loss terms:

Lmax =
∑
i

max
(
0, Tn+1(i)−max(M)

)2
(23)

Lmin =
∑
i

max
(
0,min(M)− Tn+1(i)

)2
(24)

M =
{
Tn(i); Tn+1(j), j ∼ i

}
Furthermore, a potential energy for the heat distribution can
be defined. It is given by:

E(T, t) =

∫
U

(
T (x, t)− T (t)

)2
dx (25)

For the time-differential of this energy, one can compute:

Ė(T, t) =2

∫
U

(
T (x, t)− T (t)

)
Ṫ (x, t)dx

=2α

∫
U

(
T (x, t)− T (t)

)
∆T (x, t)dx

=2α

(∫
∂U

(
T (x, t)− T (t)

)(
∇T (x, t) · ν

)
dS︸ ︷︷ ︸

energy from dissipation

−
∫
U

|∇T (x, t)|2dx︸ ︷︷ ︸
≥0

)
(26)

Assuming dissipation is relatively small, it should roughly
hold that Ė ≤ 0, so E(Tn+1) ≤ E(Tn). Thus, we introduce
another loss term:

Lenergy = max
(
0, E(Tn+1)− E(Tn)

)
(27)

For training the model, the regularizing loss functions
LΘ,Lφ,Lψ,Lheat,Lmin,Lmax, and Lenergy, as well as the
prediction loss

Ldata =
∑

i: Ci=top

(
Tn+1(i)− T

(data)
n+1 (i)

)2
(28)

are added using appropriate weights, and the descent algo-
rithm seeks to find a minimum for the sum, i.e. a model state
that fits the data without violating known properties of heat
diffusion. This restricts the admissible set of solutions, thus
mitigating the problem of underdetermination, and the reg-
ularizing loss functions also regard vertices that are discon-
nected from the surface and therefore not captured by Ldata.

Results
The model is restricted for learning a consistent diffusion
process, both with the laws of physics and the observations.
To generate the initial states for the training steps, the model
training starts only for the first layer (where we can observe



Figure 5: Predicting heat transfer of a 350-layer printed
inverted pyramid - Heat transfer can be predicted over a
long period of time by integrating real measured data into a
graph model

the complete state), and then gradually increase the number
of layers used for training. The model is trained on the first
100 layers of a print job for an inverted pyramid frustum to
evaluate predictions for all 500 layers. The optimisation was
performed with the ADAM optimizer. We used a learning
rate of η = 1 × 10−5 and decay rates β1 = 0.5 and β2 =
0.99, which estimate the first and second moments of the
gradient less than usual. Our model architecture contains the
same number of layers as the thermal images are generated.
The frame rate has been limited to 3Hz in order to be in
control of the amount of data. The internal state of the model
after printing up to a number of layers is shown in Figure 5.
For now, it is not possible to verify these predictions, as the
lower layers cannot be observed. However, the distributions
seem to be consistent with the heat process in an object.

Conclusion and Discussion
In this paper, we have proposed an NDGCN approach for
predicting heat transfer in SLM processes. First, we have
given a benchmark for our model to reproduce synthetic data
and discover physically interpretable parameters modeled as
trainable weights of the network. This foundational step un-
derscores the potential of our approach in capturing underly-
ing physical processes. In the second part, a generated graph
data structure is used to integrate thermal imaging data. In
addition, we extend our model with several regularization
principles to predict heat transfer using real measurement
data. While this work represents an essential proof of con-
cept with promising initial results, several avenues for future
research and refinement are evident. First, the second part of
the paper lacks a comprehensive evaluation of our results
in comparison to baseline models, including other machine
learning approaches. This comparative analysis will provide
valuable insights into the effectiveness of our NDGCN in re-
lation to existing methodologies. Additionally, we anticipate
expanding our dataset to encompass a broader range of built

geometries and scenarios, thereby enhancing the robustness
and applicability of our model. This broader dataset will not
only facilitate a more thorough evaluation but also enable
us to explore diverse industrial applications. Furthermore,
we acknowledge the importance of addressing the compu-
tational complexity of our NDGCN model relative to other
techniques like PINNs or numerical analysis. Such an evalu-
ation will help in understanding the computational trade-offs
associated with our approach and guide its optimization for
practical use cases.
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