
On the computational complexities of finding selected refutations of linear
programs

K. Subramani*, Piotr Wojciechowski
LDCSEE, West Virginia University, Morgantown, West Virginia, USA

k.subramani@mail.wvu.edu, pwojciec@mail.wvu.edu

Abstract
In this paper, we establish the computational complexities of
selected forms of refutations of linear programs. Linear pro-
gramming is in the complexity class P and hence, it must have
short affirmative and disqualifying certificates. One of the
more celebrated lemmata in linear programming is Farkas’
lemma, which establishes that both “yes” and “no” certifi-
cates can be thought of as solutions to complementary linear
programs. Since then, it has been established that, if a lin-
ear program is feasible, then it must have a solution which is
bounded by a polynomial function of the input size. The latter
observation, coupled with Farkas’ lemma, immediately estab-
lishes that linear programming is in NP ∩ coNP. Our goal
is to study the computational complexities of finding vari-
ous constrained refutations of arbitrary linear programs. This
paper focuses on three distinct refutation forms, viz., read-
once, tree-like and dag-like. We establish that checking if
a linear program has a read-once refutation is NP-complete,
even when it is defined by Binary Two Variable Per Inequal-
ity (BTVPI) constraints. Furthermore, the problems of find-
ing the shortest tree-like and dag-like refutations are NPO-
complete and NPO PB-complete, respectively.

1 Introduction
In this paper, we focus on the problems of checking if an
unsatisfiable linear program has specific types of refutations
under the ADD refutation system (see Section 2). A refu-
tation is a “no”-certificate that attests to the infeasibility
of the linear programming instance. Certificates are impor-
tant from the perspective of enhancing trust in the under-
lying software system. Arbitrary certificates are difficult to
verify, and hence there is significant interest in providing
certificates of certain constrained forms. This paper focuses
on three types of refutations, viz., read-once, tree-like and
dag-like. Recall that in a read-once refutation, constraints
(input or derived) cannot be reused. However, if a constraint
can be rederived without reusing constraints from the orig-
inal system, then it can be used as many times as it can be
derived. In a tree-like refutation, derived constraints cannot
be reused. However, constraints can be rederived and these
rederivations can reuse input constraints. In a dag-like refu-
tation, any constraint can be reused without needing to be
rederived.

*This research was supported in part by the Defense Advanced
Research Projects Agency through grant HR001123S0001-FP-004.

An orthogonal problem is the problem of providing suc-
cinct certificates, i.e., certificates satisfying a length criterion
under an appropriately defined notion of length. In the case
of this paper, the length of a refutation is equal to the number
of inference steps in that refutation. Read-once refutations
are succinct by definition; they are also incomplete in that
an unsatisfiable linear program may not have a read-once
refutation. Incomplete refutations have their uses in pro-
gram verification and proof complexity (Iwama and Miyano
1995). Both tree-like and dag-like refutations are complete.
However, finding refutations of these types which satisfy a
length requirement is NP-hard.

The notion of refutations is associated with a set of in-
ference rules that can be used to produce contradictions. As
mentioned before, the only inference rule in our refutation
system is the ADD rule, discussed in Section 2.

Inasmuch as the computational complexity of finding op-
timal (minimum length) refutations in all three constrained
refutation types is NP-hard, we analyze the problems of ap-
proximating the optimal length. As we will establish later,
the problem of checking if a linear program has a read-once
refutation is NP-complete, even for very restricted forms.
Furthermore, the problem of finding the length of a short-
est tree-like refutation is NPO-complete, and the problem
of finding the length of a shortest dag-like refutation is NPO
PB-complete.

2 Statement of Problems
In this section, we introduce the concepts examined in this
paper and define the problems under consideration.

In this paper, we examine proofs of infeasibility for linear
programs.

Definition 2.1 A linear program (LP) is a conjunction of
constraints in which each constraint is an inequality of the
form aj · x ≤ bj where aj ∈ Zn, bj ∈ Z, and each variable
xi can take any real value.

Example (1): System (1) is a linear program.

3 · x1 + 5 · x2 − 4 · x3 ≤ −2 (1)
−2 · x2 + 7 · x3 ≤ 4

Restricted versions of LPs have also been studied. In some
of these restrictions, each constraint has at most two non-
zero coefficients.

Definition 2.2 A Two Variable per Inequality (TVPI)
constraint is a constraint with at most two non-zero coef-
ficients.

Other restrictions limit the values which the non-zero co-
efficients can take.

Definition 2.3 A Unit Two Variable per Inequality
(UTVPI) constraint is a TVPI constraint such that each non-
zero coefficient belongs to the set {±1}.

An LP in which every constraint is a UTVPI constraint is
known as a UTVPI Constraint System (UCS).

Definition 2.4 A Binary Two Variable per Inequality
(BTVPI) constraint is a TVPI constraint such that each non-
zero coefficient belongs to the set {±1,±2}.

Note that every UTVPI constraint is a BTVPI constraint
and that every BTVPI constraint is a TVPI constraint. An LP
in which every constraint is a BTVPI constraint is known as
a BTVPI Constraint System (BCS).

Refutations are defined by the inference rules that can be
used. Refutations of linear programs can use one inference
rule. This rule corresponds to the summation of two con-
straints and is defined as follows:

ADD :

∑n
i=1 ai · xi ≤ b1

∑n
i=1 a

′
i · xi ≤ b2∑n

i=1(ai + a′i) · xi ≤ b1 + b2

(2)

We refer to Rule (2) as the ADD rule. The above
rule is to be interpreted as follows: From the constraints∑n

i=1 ai · xi ≤ b1 and
∑n

i=1 a
′
i · xi ≤ b2, we can derive

the constraint
∑n

i=1(ai + a′i) · xi ≤ b1 + b2.
Example (2): Consider the constraints 3 ·x1+5 ·x2− 4 ·

x3 ≤ −2 and −2 · x2 + 7 · x3 ≤ 4. Applying the ADD rule
to these constraints results in the constraint 3 · x1 + 3 · x2 +
3 · x3 ≤ 2.

It is easy to see that Rule (2) is sound in that any assign-
ment satisfying the hypotheses must satisfy the consequent.
Furthermore, the rule is complete in that, if the original sys-
tem is linear infeasible, then repeated application of Rule (2)
will result in a contradiction of the form: 0 ≤ b, b < 0. The
completeness of the ADD rule was established by Farkas
(Farkas 1902), in a lemma that is famously known as Farkas’
Lemma for systems of linear inequalities (Schrijver 1987).

Farkas’ lemma and the fact that linear programs must have
basic feasible solutions establish that the linear program-
ming problem is in the complexity class NP ∩ coNP.

Definition 2.5 A linear refutation is a sequence of appli-
cations of the ADD rule that results in a contradiction of the
form 0 ≤ b, b < 0.

Example (3): Consider the LP represented by System (3).

3 · x1 + 5 · x2 − 4 · x3 ≤ −2

−2 · x2 + 7 · x3 ≤ 4 − x1 − x2 − x3 ≤ −1 (3)

This system has the following linear refutation:
1. Apply the ADD rule to 3 · x1 + 5 · x2 − 4 · x3 ≤ −2 and

−2 · x2 + 7 · x3 ≤ 4 to get 3 · x1 + 3 · x2 + 3 · x3 ≤ 2.

2. Apply the ADD rule to 3 · x1 + 3 · x2 + 3 · x3 ≤ 2 and
−x1 − x2 − x3 ≤ −1 to get 2 · x1 + 2 · x2 + 2 · x3 ≤ 1.

3. Apply the ADD rule to 2 · x1 + 2 · x2 + 2 · x3 ≤ 1 and
−x1 − x2 − x3 ≤ −1 to get x1 + x2 + x3 ≤ 0.

4. Apply the ADD rule to x1 + x2 + x3 ≤ 0 and −x1 −
x2 − x3 ≤ −1 to get 0 ≤ −1.

In this paper, we study read-once refutations, tree-like
refutations, and dag-like refutations.

Definition 2.6 A read-once refutation is a refutation in
which each constraint can be used in only one inference.

This applies to constraints present in the original formula
and those derived as a result of previous inferences. Note
that in a read-once refutation, a constraint can be reused, if
it can be rederived. However, it must be rederived from a
different set of input constraints.

Example (4): Consider the refutation of System (3) in Ex-
ample 3. The constraint −x1−x2−x3 ≤ −1 is used multiple
times by the refutation. Thus, the refutation in Example 3 is
not read-once.

Definition 2.7 A tree-like refutation is a refutation in which
each derived constraint can be used at most once.

Note that in tree-like refutations, the input constraints can
be used multiple times. Thus, any derived constraint can be
derived multiple times as long as it is rederived each time it
is used. Tree-like refutation is a complete refutation proce-
dure (Beame and Pitassi 1996).

Definition 2.8 A dag-like refutation is a refutation in which
each constraint can be used multiple times.

It follows that dag-like refutations procedures are com-
plete as well.

For any refutation, we can define the length of that refu-
tation.

Definition 2.9 The length of a refutation R of a constraint
system is the number of inferences made in R.

Example (5): The refutation of System (3) in Example 3
consists of 4 inferences. Thus, the refutation has length 4.

Recall that the feasibility of linear programs can also be
determined by using Farkas’ Lemma. Note that, by using
the Farkas variables, refutations of a linear program can be
represented in polynomial space.

In this paper, we study the following problems:

1. The Read-once Refutation (ROR) problem: Given an
infeasible linear program L, does L have a read-once lin-
ear refutation?

2. The Optimal Length Read-once Refutation (OLRR)
problem: Given an infeasible linear program L, what is
the length of the shortest read-once refutation of L?

3. The Optimal Length Tree-like Refutation (OLTR)
problem: Given an infeasible linear program L, what is
the length of the shortest tree-like refutation of L?

4. The Optimal Length Dag-like Refutation (OLDR)
problem: Given an infeasible linear program L, what is
the length of the shortest dag-like refutation of L?

Lemma 2.1 Let L be the infeasible linear program
A · x ≤ b with m constraints over n variables and let y ∈
Zm be a vector such that y ≥ 0, y ·A = 0, and y · b < 0.
L has a tree-like refutation of length (

∑m
j=1 yj − 1) and a

dag-like refutation of length at most (
∑m

j=1 2 · log(yj +1)+

m− 1).

Proof: Since L is an infeasible LP, the vector y is guaran-
teed to exist by Farkas’ Lemma (Farkas 1902). We will now
use y to generate both a tree-like and a dag-like refutation
of L.

For j = 1 . . .m, let lj be the constraint aj · x ≤ bj . Note
that this is the constraint associated with the Farkas variable
yj .

For any constant c ∈ Z+, the constraint c · aj · x ≤ c · bj
can be derived from aj · x ≤ bj by the following tree-like
derivation:
1. Apply the ADD rule to aj · x ≤ bj and aj · x ≤ bj to get

2 · aj · x ≤ 2 · bj .
2. Apply the ADD rule to 2 · aj · x ≤ 2 · bj and aj · x ≤ bj

to get 3 · aj · x ≤ 3 · bj .

3.
...

4. Apply the ADD rule to (c− 1) · aj · x ≤ (c− 1) · bj and
aj · x ≤ bj to get c · aj · x ≤ c · bj .

Note that this derivation uses the ADD rule (c− 1) times.
Thus, L has the following tree-like refutation:

1. For each constraint lj , the constraint yj · aj · x ≤ yj ·
bj can be generated by applying the ADD rule (yj − 1)
times.

2. For each i = 2 . . .m, apply the ADD rule to (
∑j−1

i=1 yi ·
ai) · x ≤

∑j−1
i=1 yi · bi and yj · aj · x ≤ yj · bj to get

(
∑j

i=1 yi · ai) · x ≤
∑j

i=1 yi · bi.
3. After (m − 1) applications of the ADD rule this derives

the constraint
(y ·A) · x ≤ (y · b). Recall that y ·A = 0 and y · b <
0. Thus, this is a contradiction.

Note that this refutation uses a total of (
∑m

j=1 yj − 1)
inferences. Thus, L has a tree-like refutation of length
(
∑m

j=1 yj − 1) as desired.
For any constant c ∈ Z+, the constraint c · aj · x ≤ c · bj

can be derived from aj · x ≤ bj by the following dag-like
derivation:
1. Apply the ADD rule to aj · x ≤ bj and aj · x ≤ bj to get

2 · aj · x ≤ 2 · bj .
2. Apply the ADD rule to 2 · aj · x ≤ 2 · bj and 2 · aj · x ≤

2 · bj to get 4 · aj · x ≤ 4 · bj .

3.
...

4. Apply the ADD rule to 2⌊log c⌋−1 ·aj · x ≤ 2⌊log c⌋−1 · bj
and 2⌊log c⌋−1 · aj · x ≤ 2⌊log c⌋−1 · bj to get 2⌊log c⌋ ·
aj · x ≤ 2⌊log c⌋ · bj .

5. Let S ⊆ {0, . . . , ⌊log c⌋} be such that
∑

i∈S 2i = c.
Note that we have already derived the constraint 2i ·
aj · x ≤ 2i · bj for each i ∈ S. Thus, applying the

ADD rule (|S| − 1) times lets us derive the constraint
(
∑

i∈S 2i) · aj · x ≤ (
∑

i∈S 2i) · bj . This is precisely the
constraint c · aj · x ≤ c · bj .

Note that this derivation uses the ADD rule at most (2 ·
log(c+1)) times. The remainder of the refutation is the same
as the tree-like refutation of L. This refutation uses at most
(
∑m

j=1 2·log(yj+1)+m−1) inferences. Thus, L has a dag-
like refutation of length at most (

∑m
j=1 2·log(yj+1)+m−1)

as desired.
Note that the size of y is polynomial in the size of L.

Thus, the length of this dag-like refutation is also polyno-
mial in the size of L.

Observe that, if y ∈ {0, 1}m, then both of these refuta-
tions are read-once. □

We now define the complexity classes used in this paper.

2.1 Complexity classes
We now define the complexity classes NPO and NPO PB
used in this paper.

We begin by defining the complexity class NPO (Orponen
and Mannila 1987).

Definition 2.10 The complexity class NPO is the set of op-
timization problems such that:

1. The set of instances can be recognized in polynomial
time.

2. Solutions are polynomially sized and can be verified in
polynomial time.

3. The objective function can be computed in polynomial
time.

We next define the complexity class NPO PB (Kann
1994).

Definition 2.11 NPO PB is the set of NPO problems for
which the value of the objective function is polynomial in
the size of the input.

Finally, we introduce the notion of PTAS reductions (Or-
ponen and Mannila 1987).

Definition 2.12 A PTAS reduction from problem A to prob-
lem B, is a trio of functions f , g, and α computable in poly-
nomial time, such that:

1. f maps instances of problem A to instances of problem
B.

2. g takes an instance x of problem A, an approximate so-
lution to the corresponding problem f(x) in B, and an
error parameter ϵ and produces an approximate solution
to x.

3. α maps error parameters for solutions to instances of
problem A to error parameters for solutions to problem
B.

4. If the solution y to f(x) (an instance of problem B) is
at most (1 + α(ϵ)) times worse than the optimal solu-
tion, then the corresponding solution g(x, y, ϵ) to x (an
instance of problem A) is at most (1 + ϵ) times worse
than the optimal solution.

Definition 2.13 A problem P is NPO PB-hard under PTAS
reductions, if every problem in NPO PB can be reduced to
P by a PTAS reduction.

Unless otherwise stated, we assume that NPO PB-
hardness is specified with respect to PTAS reductions.

The set of problems which are in the class NPO PB and
are NPO PB-hard are called NPO PB-complete. Addition-
ally, for every NPO PB-complete problem P there exists an
ϵ > 0 such that P cannot be approximated to within a fac-
tor of O(nϵ) unless P = NP (Berman and Schnitger 1992).
Thus, if any NPO PB-complete problem can be approxi-
mated to within a polylogarithmic factor, then P = NP.

An example of an NPO PB-complete problem is
Bounded Minimum 0-1 Programming problem. This prob-
lem is formulated as follows:

Given an integer program A · x ≥ b, x ∈ {0, 1}n, find
the minimum value of 1 · x. This specific form of Minimum
0-1 Programming is known to be NPO PB-complete (Kann
1994).

The principal contributions of this paper are as follows:
1. Establishing that the ROR problem is NP-complete for

BCSs (see Section 3).
2. Establishing that the OLTR problem for LPs is NPO-

complete (see Section 4).
3. Establishing that the OLDR problem for LPs is NPO PB-

complete (see Section 5).

3 Read-once Refutations
In this section, we examine the ROR and OLRR problems
for linear programs.

First, we consider the problem of checking whether a
linear program has a read-once refutation. Specifically, we
show that the ROR problem for BCSs is NP-complete.

Theorem 3.1 The ROR problem for BCSs is NP-complete.

Proof: The ROR problem is clearly in NP, since we can
guess a vector y ∈ {0, 1}m and check that y ·A = 0 and
y · b < 0. Note that this vector corresponds to a set of con-
straints that, when summed together, produces a contradic-
tion. This summation can be represented as a sequence of
applications of the ADD rule where each constraint is used
at most once. This is precisely a read-once refutation.

We establish NP-hardness through a reduction from the
Exact Cover by 3-Sets (X3C) problem. We recall the defini-
tion of the X3C problem.

X3C is one of the core six problems proved to be NP-
complete in (Garey and Johnson 1979). An instance of the
X3C problem consists of a set X with 3 · n elements and a
collection C of 3-element subsets of X .

The query is: Can we find a C′ ⊆ C, such that every
element of X occurs in exactly one member of C′? Note
that the query is asking whether there is a subset of C′ that
exactly covers all the elements of X .

Assume that we are given the following instance of X3C:
1. Set X = {x1, x2, . . . , x3·n}.
2. Sets C1, C2, . . . Cm ⊆ X , with |Ci| = 3, for i =

1, 2, . . . ,m.

From this instance, we construct the following instance of
ROR.
1. Corresponding to each set Cj = (xj1 , xj2 , xj3), create

the constraints lj,1 : xj1−2·wj ≤ 0, lj,2 : wj+xj2 ≤ 0,
and lj,3 : wj + xj3 ≤ 0. Note that these constraints are
equivalent to the constraint xj1 + xj2 + xj3 ≤ 0.

2. Create the constraints l1 : −x1 + 2 · y1 ≤ −1, l2 :
−y1 − x2 ≤ 0, l3 : 2 · y2 − y1 ≤ 0, l4 : −y2 − x3 ≤ 0,
l5 : 2 ·y3−y2 ≤ 0, . . ., l6·n−5 : 2 ·y3·n−2−y3·n−3 ≤ 0,
l6·n−4 : −y3·n−2−x3·n−1 ≤ 0, and l6·n−3 : −y3·n−2−
x3·n ≤ 0. Note that these constraints are equivalent to the
constraint −x1 − . . .− x3·n ≤ −1.

The resulting linear program is:

L :

m∧
j=1

(lj,1 ∧ lj,2 ∧ lj,3) ∧
6·n−3∧
i=1

li (4)

We now argue that there is a one-to-one correspondence be-
tween Exact Covers of X by 3-Sets and RORs of the con-
structed linear program.

Consider any exact cover C′ of X by 3-Sets from the
given subsets C1, . . . , Cm. It is clear that |C′| = n. With-
out loss of generality, we can assume that C1, . . . Cn are the
subsets picked.

First, let us consider the constraints l1 through l6·n−3. By
construction, each xi occurs in exactly one constraint with
coefficient −1. Additionally, each yi occurs in one constraint
with coefficient 2 and in two constraints with coefficient −1.
Thus, summing these constraints results in the constraint
d0 : −x1 − x2 − . . .− x3·n ≤ −1.

Now focus on the corresponding linear constraints. Cor-
responding to each Cj , we have the constraints lj,1, lj,2,
and lj,3. Summing these constraints results in the constraint
dj xj1 + xj2 + xj3 ≤ 0. Since the Cjs form an exact
cover, each variable xi will occur precisely once across all
the djs, j = 1, 2, . . . , n. When we sum the constraints dj ,
j = 1, 2, . . . , n with the constraint d0, every variable is can-
celed and we get the contradiction 0 ≤ −1. Since each con-
straint was used at most once, this is a read-once refutation.

Now assume that the linear program represented by Sys-
tem (4) has a read-once refutation. This means that some
subset of the constraints in L, when added together, pro-
duces a contradiction.

By construction, l1 is the only constraint with a negative
defining constant. Thus, l1 must be part of this refutation;
indeed, it is part of every refutation (read-once or otherwise).

Any read-once refutation of L must eliminate the 2 · y1
term from l1. By construction, the only constraints with −y1
are l2 and l3. Thus, both of these constraints must be used in
the refutation. Summing all three constraints together results
in the constraint −x1 − x2 + 2 · y2 ≥ −1.

Any read-once refutation of L must eliminate the 2 · y2
term from this constraint. By construction, the only con-
straints with −y2 are l4 and l5. Thus, both of these con-
straints must be used in the refutation. Summing all three
constraints together results in the constraint −x1 − x2 −
x3 + 2 · y3 ≥ −1. This continues until all yis are elim-
inated in this fashion. This results in the constraint d0 :
−x1 − x2 − . . .− x3·n ≤ −1.

Let us consider the set of constraints corresponding to Cj .
By construction, these are the only constraints with the vari-
able wj . Observe that in lj,1, wj has coefficient −2, while
in lj,2 and lj,3 it has coefficient 1. Thus, any read-once refu-
tation of L must use either all three of these constraints, or
none of these constraints. Otherwise, a wj term will be left
in the final summation. This means that, from the perspec-
tive of read-once refutation, the constraints lj,1, lj,2 and lj,3
are equivalent to the constraint dj : xj1 + xj2 + xj3 ≤ 0.
Let D =

∧m
j=1 dj .

Since all the variables in d0 must be canceled by the refu-
tation, the remaining constraints in the refutation correspond
to a subset of D such that each xi occurs in exactly one con-
straint. Let D′ denote this set of constraints. When we look
at the subsets Cj corresponding to the constraints dj ∈ D′,
it is clear that they form an exact cover by 3-Sets of the set
S. □

4 Tree-like refutations
In this section, we determine the complexity of finding short
tree-like refutations in general linear programs.

Theorem 4.1 The OLTR problem is NPO-complete under
PTAS reductions.

Proof: Note that a tree-like refutation of a linear pro-
gram can be represented by the coefficients generated from
Farkas’ Lemma (Farkas 1902). Thus, a tree-like refutation
R of a linear program L is polynomially sized in terms of
the size of L. Additionally, from Lemma 2.1, the length of
a tree-like refutation can be computed in polynomial time.
Thus, the OLTR problem is in NPO. Now we need to show
NPO-hardness.

This will be accomplished by a reduction from the Travel-
ing Salesman Path Problem. This problem is NPO-complete
(Orponen and Mannila 1987).

Let G be a complete undirected graph with n vertices.
From G we create an LP L as follows:
1. For each vertex vi in G, create the variable xi.
2. Create the constraint x1+2 ·x2+2 ·x3+ . . .+2 ·xn−1+

xn ≤ −1.
3. For each edge ei,j in G, create the variables yi,j and zi,j,l

for l = 1, . . . , n − 1. Additionally, create the constraint
−yi,j ≤ 0.

4. For each edge ei,j such that i, j ∈ {2, . . . , n}, and each
l = 2, . . . , n − 2, create the constraint −xi − xj + 2 ·
(n− 1) · w(ei,j) · yi,j + 2 · zi,j,l ≤ 0.

5. For each edge ei,n, create the constraint −xi − xn + 2 ·
(n− 1) · w(ei,n) · yi,n + zi,n,n−1 ≤ 0.

6. For each edge e1,j , create the constraint −x1 − xj + 2 ·
(n− 1) · w(e1,j) · y1,j + z1,j,1 ≤ 0.

7. For each pair of edges ei,j and ej,k that share an end-
point, and each l = 1, . . . , n − 2, create the constraint
−zi,j,l − zj,k,l+1 ≤ 0.

This construction forms the function f for our PTAS reduc-
tion.

First, assume that G has a Traveling Salesman Path P
of length W from x1 to xn. Let P traverse the vertices in

the order vP (1) through vP (n). We can construct a tree-like
refutation R of length 2 · (n− 1) · (W +1) for L as follows:
1. Start with the constraint x1 + 2 · x2 + 3 · x2 + . . . + 2 ·

xn−1 + xn ≤ −1.
2. Add the constraint −x1−xP (2)+2 ·(n−1) ·w(e1,P (2)) ·

y1,P (2) + z1,P (2),1 ≤ 0 to R.
3. For i = 2 . . . n− 2, add the constraint

−xP (i) − xP (i+1) + 2 · (n − 1) · w(eP (i),P (i+1)) ·
yP (i),P (i+1) + 2 · zP (i),P (i+1),i ≤ 0 to R.

4. Add the constraint
−xP (n−1)−xn+2 ·(n−1) ·w(eP (n−1),n) ·yP (n−1),n+
zP (n−1),n,n−1 ≤ 0 to R.

5. For i = 1 . . . n−1, add 2·(n−1)·w(eP (i),P (i+1)) copies
of the constraint −yP (i),P (i+1) ≤ 0 to R.

6. For i = 1 . . . n − 2, the constraint −zP (i),P (i+1),i −
zP (i+1),P (i+2),i+1 ≤ 0 to R.

Observe that summing the constraints in R results in the
contradiction 0 ≤ −1. Additionally, R contains a total of
2 · (n− 1) · (W + 1) constraints. Thus R is a tree-like refu-
tation of length 2 · (n− 1) ·W for L.

Now assume that L has a tree-like refutation R of length
2 · (n− 1) · (W + 1) for L. We can construct a set of edges
P as follows: For each edge ei,j , if R contains the constraint
−yi,j ≤ 0, add ei,j to P . This forms the function g for our
PTAS reduction. Observe the following:
1. The constraint x1+2 ·x2+3 ·x2+ . . .+2 ·xn−1+xn ≤

−1, is the only constraint in the system with a negative
defining constant. Thus, it must be part of R. We will
refer to this constraint as C.

2. To cancel x1 from C, R must include a constraint of the
form −x1−xj+2·(n−1)·w(e1,j)·y1,j+z1,j,1 ≤ 0. Let
P (2) = j. Note that this constraint also cancels a copy
of xP (2) from C.

3. To cancel the other copy of xP (2) from C, R must include
a constraint of the form −xP (2) − xj + 2 · (n − 1) ·
w(eP (2),j)·yP (2),j+2·zP (2),j,1 ≤ 0. Let P (3) = j. Note
that this constraint also cancels a copy of xP (3) from C.

4. We can continue this process until P (h) = n for some
h ≤ n. Due to the structure of C, the vertices v1, vP (2),
vP (3), . . ., vP (h) are all distinct.

5. Consider the constraint −xP (h−1)−xP (h)+2 · (n− 1) ·
w(eP (h−1),P (h)) · yP (h−1),P (h) + zP (h−1),P (h),1 ≤ 0 in
R. Since P (h) = n, by construction of L, this constraint
must be −xP (h−1)−xP (h)+2·(n−1)·w(eP (h−1),P (h))·
yP (h−1),P (h)+zP (h−1),P (h),n−1 ≤ 0. Note that this con-
straint introduces the variable zP (h−1),P (h),n−1 to R

6. Consider the constraint −xP (h−2) − xP (h−1) + 2 ·
(n − 1) · w(eP (h−2),P (h−1)) · yP (h−2),P (h−1) + 2 ·
zP (h−2),P (h−1),1 ≤ 0 in R. Recall that R con-
tains the variable zP (h−1),P (h),n−1. To cancel this
variable, R must contain a constraint of the form
−zj,P (h−1),n−2 − zP (h−1),P (h),n−1 ≤ 0. By construc-
tion, zP (h−2),P (h−1),1 = zj,P (h−1),n−2. Thus, l = n−2.

7. Continuing this process, we see that 1 = n − (h − 1).
Thus, h = n. As shown previously, the vertices v1, vP (2),

vP (3), . . ., vP (n) are all distinct. Thus P is a Traveling
Salesman Path in G. For each edge eP (i),P (i+1) in P ,
R contains 2 · (n− 1)w(eP (i),P (i+1)) copies of the con-
straint −yP (i),P (i+1) ≤ 0. From the observations above,
R contains an additional 2 · (n − 1) constraints. Thus,
R contains a total of 2 · (n − 1) · (W ′ + 1) constraints
where W ′ is the total length of P . Since R has length
2 · (n− 1) · (W + 1), P has length W .

All that remains is show that this is a PTAS reduction.
This will be done by establishing the existence of the func-
tions f , g, and α.

1. The function f : We provided a method for constructing
a linear program L from a graph G. This forms the func-
tion f required for the PTAS reduction.

2. The function g: We provided a method to take a tree-like
refutation of L and construct a Traveling Salesman Path
in G. This forms the function g required for the PTAS
reduction.

3. The function α: Let W ∗ be the shortest Traveling Sales-
man Path in G. L has a tree-like refutation of length
2·(n−1)·(W ∗+1). Additionally, if L had a shorter tree-
like refutation, then G would have a shorter path. Thus,
the OLTR of L has length 2 · (n − 1) · (W ∗ + 1). Let
α(ϵ) = ϵ−1

2 .
Let R be a tree-like refutation of L of length 2 · (n− 1) ·
(W + 1). The function g produces a Traveling Salesman
Path of length W . If 2·(n−1)·(W+1)

2·(n−1)·(W∗+1) ≤ 1 + α(ϵ) = ϵ+1
2 ,

then

W

W ∗ ≤ 2 ·W
2 ·W ∗ ≤ 2 · (W + 1)

W ∗ + 1
≤ 2 · (ϵ+ 1)

2
= 1 + ϵ.

Thus, the OLTR problem for linear programs is NPO-
complete. □

5 Dag-like refutations
In this section, we determine the complexity of finding short
dag-like refutations in general linear programs.

Theorem 5.1 The OLDR problem is NPO PB-complete un-
der PTAS reductions.

Proof: From Farkas’ Lemma, a dag-like refutation R of
a linear program L is polynomially sized in terms of the
size of L. Additionally, from Lemma 2.1, the length of a
dag-like refutation can be computed in polynomial time. Fi-
nally, from Lemma 2.1, the length of the dag-like refutation
is polynomial in terms of the size of L. Thus, the OLDR
problem is in NPO PB. Now we need to show NPO PB-
hardness.

This will be accomplished by a reduction from the Mini-
mum Integer Programming problem.

Consider the following instance of the Minimum 0-1 pro-
gramming problem:

min

n∑
i=1

(2 · log ci + 1) · xi A · x = b x ∈ {0, 1}n.

Assume without loss of generality that c ≥ 1.

While in general Minimum 0-1 programming is NPO-
complete, the values of the coefficients in the optimization
function are polynomial in the size of the input. Thus, the
final value of the objective function is polynomial in the
size of the input. Consequently, this problem is NPO PB-
complete (Kann 1994; Orponen and Mannila 1987).

Let D be the n × n matrix such that di,i = ci − 1 and
di,j = 0 for i ̸= j. Corresponding to the Minimum 0-1
programming instance, we can construct the following linear
program:

y ·A+ z ·D ≤ 0 − z ≤ 0 −y · b ≤ −1

We make the following observations about any dag-like
linear refutation R of this LP:

1. The constraint −y · b ≤ −1, is the only constraint in the
system with a negative defining constant. Thus, it must
be part of the refutation.

2. Let y · ai + (ci − 1) · zi ≤ 0 be the ith constraint of
y ·A + z ·D ≤ 0, and let xi be 1, if this constraint is
used in the refutation and 0 otherwise.

3. For each constraint y · ai+(ci−1)·zi ≤ 0, an additional
(ci−1) copies of the constraint −zi ≤ 0 must be used to
cancel the zi term introduced in the refutation. As per the
proof of Lemma 2.1, a dag-like refutation requires (2 ·
log ci + 1) uses of the ADD rule to derive the constraint
−(ci − 1) · zi. Since the length of the dag-like refutation
is at most

∑n
i=1(2 · log ci + 1) · xi + 1, each constraint

of the form y · ai + (ci − 1) · zi ≤ 0 can be used at most
once.

4. Summing all constraints in the refutation results in the
constraint 0 ≤ −1. Thus, after canceling the z variables,
we must have that each term of −y · b is canceled by a
term of (y ·A) · x. Thus, we must have that A · x = b.
Thus, x is a valid solution to the original 0-1 program.

This means that, from a solution x of the 0-1 program-
ming problem, we can construct a dag-like refutation to this
LP. This is done by adding the constraint y · ai + (ci − 1) ·
zi ≤ 0 and (ci−1) copies of the constraint −zi ≤ 0 for each
xi = 1 in x. From the observations above, this is a dag-like
refutation of the constructed LP.

All that remains is show that this is a PTAS reduction.
This will be done by establishing the existence of the func-
tions f , g, and α.

1. The function f : We provided a method for constructing
a linear program L from an instance of the Minimum 0-
1 Programming problem M. This forms the function f
required for the PTAS reduction.

2. The function g: We provided a method to take a dag-like
refutation of L and construct a feasible solution to M.
This forms the function g required for the PTAS reduc-
tion.

3. The function α: Let k∗ be the optimal solution to M. L
has a dag-like refutation of length (k∗+1). Additionally,
if L had a shorter dag-like refutation, then M would have
a solution for which the optimization function has a lower
value. Thus, the OLDR of L has length (k∗ + 1). Let
α(ϵ) = ϵ−1

2 .

Let R be a dag-like refutation of L of length (k+1). The
function g produces a solution to M with value k. Since
the feasibility of the zero vector can be tested in polyno-
mial time, we can assume without loss of generality that
k∗ ≥ 1. If k+1

k∗+1 ≤ 1 + α(ϵ) = ϵ+1
2 , then

k

k∗
≤ 2 · k

2 · k∗
≤ 2 · (k + 1)

k∗ + 1
≤ 2 · (ϵ+ 1)

2
= 1 + ϵ.

Thus, the OLDR problem for linear programs is NPO PB-
complete. □

6 Conclusion
This paper was concerned with checking if an unsatisfi-
able linear program has specific types of refutations. As has
been discussed extensively in the literature, general refu-
tations may be difficult to verify and hence the search for
constrained certificates is of significant interest. We studied
three types of refutations under the ADD refutation rule.
Our investigations established that the problem of check-
ing if a restricted linear program (BTVPI constraint system)
has a read-once refutation is NP-complete. Furthermore, the
problems of finding the shortest tree-like and shortest dag-
like refutations are NPO-complete and NPO PB-complete
respectively. Our results essentially rule out the existence of
efficient approximation schemes with “good” error bounds,
unless P=NP. From our perspective, an interesting line of
work is investigating fixed-parameter (FPT) approaches
for these problems.

From our perspective, the following problems are worth
pursuing:
1. Closing the gap - We established that the read-once refu-

tation problem for linear programs is NP-hard, using
an extremely restricted class of inputs. However, for es-
tablishing approximation complexity, we used the class
of arbitrary linear programs. The question of interest is
whether the NPO PB-completeness holds for the re-
stricted class of linear programs or whether this class be-
longs to a smaller approximation complexity class such
as APX.

2. Algorithmic approaches - Our results do not rule out the
existence of fixed parameter tractable (FPT) algorithms
for the problems discussed in this paper. Indeed, we have
had some success with designing FPT algorithms for
similar problems (Subramani and Wojciechowski 2020).

References
Armando, A.; Castellini, C.; and Mantovani, J. 2004. Soft-
ware model checking using linear constraints. In Lec-
ture Notes in Computer Sciente, volume 3308, 209–223.
Springer.
Beame, P.; and Pitassi, T. 1996. Simplified and Improved
Resolution Lower Bounds. In 37th Annual Symposium
on Foundations of Computer Science, 274–282. Burlington,
Vermont: IEEE.
Berman, P.; and Schnitger, G. 1992. On the complexity of
approximating the independent set problem. Information
and Computation, 96(1): 77 – 94.
Berstel, B.; and Leconte, M. 2008. Using constraints to ver-
ify properties of rule programs. In Proceedings of the 2010
Int. Conf. on Software Testing, Verification, and Validation
Workshops, 349–354.
Ceberio, M.; Acosta, C.; and Servin, C. 2008. A Constraint-
based approach to Verification of Programs with Floating-
point Numbers. In Proceedings of the 2008 Int. Conf. of
Software Engineering Research and Practice, 225–230.
Collavizza, H.; and Reuher, M. 2006. Exploration of the
capabilities of constraint programming for software verifi-
cation. In Proceedings of the 2006 Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems.
Collavizza, H.; Reuher, M.; and Van Hentenryck, P. 2004.
CPBPV:A constraint-programming framework for bounded
program verification. In Proceedings of the 2008 Int.
Conf. on Principles and Practices of Constraint Program-
ming, volume 5202 of Lecture Notes in Computer Science.
Springer.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2001. Introduction to Algorithms. MIT Press.
Cousot, P.; and Halbwachs, N. 1978. Automatic Discov-
ery of Linear Restraints Among Variables of a Program. In
POPL, 84–96.
Dill, D. L. 1989. Timing assumptions and verification of
finite-state concurrent systems. In International Conference
on Computer Aided Verification, 197–212. Springer.
Farkas, G. 1902. Über die Theorie der Einfachen Ungle-
ichungen. Journal für die Reine und Angewandte Mathe-
matik, 124(124): 1–27.
Garey, M. R.; and Johnson, D. S. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman Company, San Francisco.
Gulwani, S.; Srivastava, S.; and Venkatesan, R. 2008. Pro-
gram analysis as constraint solving. In Proceedings of the
2008 ACM SIGPLAN Conf. on Programming language de-
sign and implementation. New York, NY: ACM.
Iwama, K.; and Miyano, E. 1995. Intractability of Read-
Once Resolution. In Proceedings of the 10th Annual Con-
ference on Structure in Complexity Theory (SCTC ’95), 29–
36. Los Alamitos, CA, USA: IEEE Computer Society Press.
ISBN 0-8186-7052-5.
Kann, V. 1994. Polynomially Bounded Minimization Prob-
lems That Are Hard to Approximate. Nordic J. of Comput-
ing, 1(3): 317–331.

Kleine Büning, H.; Wojciechowski, P. J.; Chandrasekaran,
R.; and Subramani, K. 2019. Restricted Cutting Plane Proofs
in Horn Constraint Systems. In Herzig, A.; and Popescu,
A., eds., Frontiers of Combining Systems - 12th Interna-
tional Symposium, FroCoS 2019, London, UK, September
4-6, 2019, Proceedings, volume 11715 of Lecture Notes in
Computer Science, 149–164. Springer.
Kleine Büning, H.; Wojciechowski, P. J.; and Subramani, K.
2018. Finding read-once resolution refutations in systems of
2CNF clauses. Theor. Comput. Sci., 729: 42–56.
Laviron, V.; and Logozzo, F. 2009. SubPolyhedra: A (More)
Scalable Approach to Infer Linear Inequalities. In Jones,
N. D.; and Müller-Olm, M., eds., Verification, Model Check-
ing, and Abstract Interpretation: 10th International Confer-
ence, VMCAI 2009, Savannah, GA, USA, January 18-20,
2009. Proceedings, 229–244. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN 978-3-540-93900-9.
Miné, A. 2006. The octagon abstract domain. Higher-Order
and Symbolic Computation, 19(1): 31–100.
Nemhauser, G. L.; and Wolsey, L. A. 1999. Integer
and Combinatorial Optimization. New York: John Wi-
ley & Sons.
Orponen, P.; and Mannila, H. 1987. On approximation
preserving reductions: Complete problems and robust mea-
sures. Technical report, Department of Computer Science,
University of Helsinki.
Schrijver, A. 1987. Theory of Linear and Integer Program-
ming. New York: John Wiley and Sons.
Subramani, K. 2009. Optimal Length Resolution Refuta-
tions of Difference Constraint Systems. Journal of Auto-
mated Reasoning (JAR), 43(2): 121–137.
Subramani, K.; and Wojciechowki, P. 2019. A Polyno-
mial Time Algorithm for Read-Once Certification of Lin-
ear Infeasibility in UTVPI Constraints. Algorithmica, 81(7):
2765–2794.
Subramani, K.; and Wojciechowski, P. 2020. Finding read-
once refutations in 2CNF formulas and variants - a param-
eterized perspective. In The 16th International Symposium
on Artificial Intelligence and Mathematics.
Wojciechowski, P.; and Subramani, K. 2022. On the lengths
of tree-like and Dag-like cutting plane refutations of Horn
constraint systemsi. Annals of Mathematics and Artificial
Intelligence, 90: 979–995.
Wojciechowski, P.; and Subramani, K. 2023. A Faster Algo-
rithm for Determining the Linear Feasibility of Systems of
BTVPI Constraints. In Gasieniec, L., ed., SOFSEM 2023:
Theory and Practice of Computer Science - 48th Interna-
tional Conference on Current Trends in Theory and Practice
of Computer Science, SOFSEM 2023, Nový Smokovec, Slo-
vakia, January 15-18, 2023, Proceedings, volume 13878 of
Lecture Notes in Computer Science, 313–327. Springer.
Wojciechowski, P.; Subramani, K.; and Chandrasekaran, R.
2022. Analyzing Read-Once Cutting Plane Proofs in Horn
Systems. Journal of Automated Reasoning (JAR), 66: 239–
274.

Wojciechowski, P. J.; Subramani, K.; Velasquez, A.; and
Williamson, M. D. 2022. On the Approximability of Path
and Cycle Problems in Arc-Dependent Networks. In Bal-
achandran, N.; and Inkulu, R., eds., Algorithms and Dis-
crete Applied Mathematics - 8th International Conference,
CALDAM 2022, Puducherry, India, February 10-12, 2022,
Proceedings, volume 13179 of Lecture Notes in Computer
Science, 292–304. Springer.
Yannakakis, M. 1991. Expressing Combinatorial Optimiza-
tion Problems by Linear Programs. Journal of Computer
and System Sciences, 43(3): 441–466.

