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Abstract

Discrimination-aware data mining is expected to play
an important role in data-driven decision making, as
“BIG data” can be obtained from the actual society. To
build the appropriate decision making system, AI re-
searchers and practitioners have proposed various dis-
crimination measures. However, most of the existing
discrimination measures cannot be interpreted as the
“proportion” and thus may not provide the comparable
evaluation of the discrimination level. To evaluate how
much of discrimination is based on a sensitive feature
directly, indirectly, or totally, we propose three pro-
portion measures of discrimination using natural direct
and indirect effects (Pearl, 2009). The effectiveness of
the proposed discrimination measures is confirmed on
Adult Census Data (Becker and Kohavi, 1996).

Introduction
Current society is complicated and increasingly relies
on decision-making systems based on observed data. In
this situation, discrimination-aware data mining is ex-
pected to play an important role in data-driven decision
making, as “BIG data” can be obtained from the soci-
ety (Žliobaitė 2017; Toreini et al. 2020). In recent years,
AI researchers and practitioners have developed a num-
ber of discrimination-aware data mining algorithms, us-
ing various measures to evaluate how much of discrim-
ination is based on a sensitive (or protected) feature
(Žliobaitė 2017). Such measures are called discrimina-
tion measures in this paper.

Regarding the definition of discrimination, Žliobaitė
(2017) stated that “In the context of data mining and
machine learning, non-discrimination can be defined as
follows: (1) people that are similar in terms of non-
protected characteristics should receive similar predic-
tions, and (2) differences in predictions across groups
of people can only be as large as justified by their
non-protected characteristics.” The first condition is re-
lated to direct discrimination or disparate treatment
(Zafar et al. 2017), and the second condition ensures
that there is no indirect discrimination or no disparate
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impact (Zafar et al. 2017). In addition, Žliobaitė (2017)
pointed out, for example, that “(The first condition)
can be illustrated by so called twin test: if gender is
the protected attribute and we have two identical twins
that share all characteristics, but gender, they should
receive identical predictions.” The statement “two iden-
tical twins that share all characteristics, but gender” is
a counterfactual situation implying that statistical dis-
crimination measures based on observed data cannot
evaluate direct or indirect discrimination; the idea from
causal inference is necessary to develop discrimination-
aware data mining algorithms. Nevertheless, most of AI
researchers and practitioners have proposed various dis-
crimination measures from statistical viewpoints. Such
discrimination measures have drawbacks. First, most of
the existing discrimination measures are not designed
to have a value on the range [0, 1] without any assump-
tions: they cannot be interpreted as the ‘proportion’ in
the mathematical meaning and thus may not provide
the comparable evaluation of the discrimination level,
because they are formulated based on the different tar-
get populations. Thus, it is required to interpret them
based on not only the values taken by these measures
but also the characteristics of the relevant parameters
used in the discrimination measures, such as the val-
ues, the signs, and the interactions. Second, it is not
obvious how they reflect the dependences between sen-
sitive and non-sensitive features. Third, it is too strict
and unlikely to satisfy no discrimination completely in
actual situations, and thus it is necessary to formulate
new discrimination measures that describe how much of
discrimination is based on a sensitive feature directly,
indirectly or totally.

To solve these problems, we propose causal discrimi-
nation criteria based on natural direct and indirect ef-
fects (Pearl 2009). Causal discrimination criteria are
useful to clarify causal aspects of the discrimination
mechanism and highlight the importance of causal in-
ference in the field of discrimination-aware data min-
ing. In addition, under the assumption that there is
no confounder, we clarify the difference between the
proposed discrimination criteria and the statistical dis-
crimination criteria. Furthermore, to evaluate the dis-
crimination level, referring to Zhang and Bareinboim



(2018); Plecko and Bareinboim (2022), we formulate
three novel proportion measures of discrimination based
on natural direct and indirect effects: the proportion
of the total variation explained by direct discrimina-
tion (PTVdirect), the proportion of total discrimina-
tion explained by direct discrimination (PTDdirect), and
the proportion of the total variation explained by total
discrimination (PTVtotal). Finally, the effectiveness of
the proposed discrimination measures is confirmed on
Adult Census Data (Becker and Kohavi 1996). Unlike
the existing discrimination-aware data mining based
on causal inference (e.g., Kilbertus et al. 2017; Kus-
ner et al. 2017), the results of this paper contribute to
the reliable evaluation of how much of discrimination
is based on a sensitive feature directly, indirectly, or
totally, and thus are also applicable to evaluating the
degree of a sensitive feature appeared in discrimination
when we wish to judge whether or not discrimination-
unaware data mining is appropriate to analyze observed
data.

Structral causal model
In this paper, we assume that the readers are familiar
with the language of counterfactuals from the semantics
of structural causal models, as given in Pearl (2009).

Given a set V = {V1, V2, . . . , Vm} of random vari-
ables, let vi and v represent the values taken by Vi

and V , respectively. In addition, for Vi, Vj ∈ V , let
P (Vi = vi) = P (vi), P (V = v) = P (v), and P (Vi =
vi | Vj = vj) = P (vi|vj) denote the (marginal) proba-
bility of Vi = vi, the joint probability of V = v, and
the conditional probability of Vi = vi given Vj = vj ,
respectively. Furthermore, for Vi, Vj ∈ V , let EVi

[Vi]
and EVi|vj

[Vi | Vj = vj ] = EVi|vj
[Vi|vj ] denote the

(marginal) expectation of Vi and the conditional expec-
tation of Vi given Vj = vj , respectively. Similar notation
is used for other probabilities and expectations. Here,
it is noted that the discussion of this paper is mainly
based on survival functions such as P (Vi > vi), because
we have

EVi [Vi] =
∞∑

vi=0
{P (Vi > vi) − P (Vi ≤ −vi)} (1)

for EVi [|Vi|] < ∞, where the symbol |Vi| indicates the
absolute value of Vi. In addition, summation symbols
are replaced by integrals whenever the summed vari-
ables are continuous unless noted otherwise.

The structural causal model is then defined as fol-
lows:
Definition 1 (Structural Causal Model). A structural
causal model is the four-tuple ⟨U , V , F , P (u)⟩, where

(1) U is a set of exogenous variables, determined by fac-
tors outside the model;

(2) V is a set of endogenous variables, determined by
variables in U ∪ V ;

(3) F is a set of functions, where each fvi ∈ F is a data
generating process that assigns a value

vi = fvi
(v \ {vi}, u) (2)

to Vi ∈ V in response to the values u∪v \{vi} taken
by U ∪ V \ {Vi}; and

(4) P (u) is the probability of U = u.
Through this paper, we assume that the structural

causal model does not have feedback, i.e., the output of
one variable in the data generating process (2) is not
returned as the input of the same variable.

In the framework of structural causal models, the ex-
ternal intervention of X = x, denoted by do(X = x),
represents a model manipulation that X is set to some
fixed value x, regardless of how the value is ordinar-
ily determined by the function fx. The probability of
Y > y when the external intervention do(X = x) is
conducted, denoted by P (Y > y | do(X = x)), is called
a causal risk of X = x on Y > y in this paper. When
causal quantities such as P (Y > y | do(X = x)) are
given as a non-trivial function of both x and y, it is
said that X has an effect on Y > y, or Y is affected by
X.

Using the semantics of structural causal models,
P (Y > y | do(X = x)) can be translated into the prob-
ability of the potential outcome variable Yx. Here, the
potential outcome Yx = y represents the counterfactual
sentence “Y would have the value y, had X been x.”
Similar notation is applied to other potential outcome
variables. Then, we have

P (Y > y | do(X = x)) = P (Yx > y).

When a randomized experiment is conducted, X is in-
dependent of Yx for any x, denoted as

Yx á X

for any x. This condition is often called exogeneity. Un-
der the assumption of exogeneity, by the consistency
property (Pearl 2009), i.e.,

X = x =⇒ Yx = Y, (3)

P (Yx > y) is identifiable and is given by

P (Yx > y) = P (Y > y | x).

Here, ‘identifiable’ means that causal quantities such as
P (Yx > y) can be estimated consistently from a joint
probability of observed variables. When a randomized
experiment is difficult to conduct, P (Yx > y) can still
be identified in accordance with conditional ignorabil-
ity, or graphically, the back door criterion (Pearl 2009):
when there exists a set Z of variables such that X is
conditionally independent of Yx given Z for any x, de-
noted as

Yx á X | Z

for any x, and P (x | z) > 0 for any x and z, we say
that Z satisfies the conditional ignorability condition
relative to (X, Y ). Then, by the consistency property,



P (Yx > y) can be estimated using a set Z of observed
variables as follows:

P (Yx > y) = Ez [P (Y > y | x, Z)] ,

where Ez [P (Y > y | x, Z)] stands for the expectation
of P (Y > y | x, Z) regarding Z. The other identifica-
tion conditions of causal risks are given in Pearl (2009).

Effect measures
To propose new discrimination measures, we let X be
a sensitive feature to be protected and Y be an out-
come variable. A variable that is not sensitive is called
a non-sensitive feature. In addition, we let S stand for
an intermediate variable that would be affected by X
and could have an effect on Y . Note that our discus-
sion is based on a single intermediate variable, but the
extension of our results to multiple intermediate vari-
ables is straightforward. Let P (X = x) = P (x) and
P (Y > y | X = x) = P (Y > y | x) denote the
(marginal) probability of X = x and the conditional
probability of Y > y given X = x, respectively. Similar
notation is used for other probabilities.

One of representative discrimination measures is the
total variation (TV) (Žliobaitė 2017; Plecko and Barein-
boim 2022):
Definition 2 (Total Variation). The total variation
(TV) on Y > y comparing X = x1 to X = x0, de-
noted by TVy(x1, x0), is defined as

TVy(x1, x0) = P (Y > y | x1) − P (Y > y | x0)
for the risk difference scale, and

TVy(x1, x0) = P (Y > y | x1)/P (Y > y | x0)
for the risk ratio scale assuming P (Y > y | x0) ̸= 0.

The TV is nothing more than a statistical measure,
since it is the comparison between the probabilities of Y
in the passively observed groups of X = x1 and X = x0.
Thus, the TV is identifiable without causal knowledge
if observed probabilities P (y | x) are available.

Let Yx be the potential outcome variable that rep-
resents the counterfactual sentence “Y would have the
value y, had X been x.” Similar notation is applied to
other potential outcome variables. Then, another rep-
resentative discrimination measure is the total effect
(TE):
Definition 3 (Total Effect). The total effect (TE) on
Y > y comparing X = x1 to X = x0, denoted by
TEy(x1, x0), is defined as

TEy(x1, x0) = P (Yx1 > y) − P (Yx0 > y)
for the risk difference scale, and

TEy(x1, x0) = P (Yx1 > y)/P (Yx0 > y)
for the risk ratio scale assuming P (Yx0 > y) ̸= 0.

Differently from the TV, the TE measures the change
on the probability of Y when X changes from X = x0 to
X = x1 by the external intervention while S is allowed
to track the change in X.

Referring to Pearl (2009), we define the NDE and
NIE as follows:

Definition 4 (Natural Direct and Indirect Effects).
The natural direct effect (NDE) on Y > y comparing
X = x1 to X = x0 when S is set to Sx1 , denoted by
NDEy(x1, x0|S), is defined as

NDEy(x1, x0|S) = P (Yx1,Sx1
> y) − P (Yx0,Sx1

> y)
for the risk difference scale, and

NDEy(x1, x0|S) = P (Yx1,Sx1
> y)/P (Yx0,Sx1

> y)

for the risk ratio scale assuming P (Yx0,Sx1
> y) ̸= 0.

The natural indirect effect (NIE) on Y > y com-
paring Sx1 to Sx0 when X is set to x0, denoted by
NIEy(x1, x0|S), is defined as

NIEy(x1, x0|S) = P (Yx0,Sx1
> y) − P (Yx0,Sx0

> y)
for the risk difference scale, and

NIEy(x1, x0|S) = P (Yx0,Sx1
> y)/P (Yx0,Sx0

> y)

for the risk ratio scale assuming P (Yx0,Sx0
> y) ̸= 0.

The NDE measures the change on the probability of
Y as X changes from X = x0 to X = x1 by the external
intervention while setting S to whatever value it would
have obtained under X = x1. Contrary, the NIE mea-
sures the change on the probability of Y when the X
is held constant at X = x0, and S changes to whatever
value it would have attained under X = x1. Here, when
we focus on direct and indirect discrimination based
on S, note that the idea of the ‘twin test’ stated in
Žliobaitė (2017) is reflected in the NDE and NIE. In
fact, in an employment-discrimination case known as
Carson versus Bethlehem Steel Corp. (70 FEP Cases
921, 7th Cir. (1996)), which was introduced by Pearl
(2001) to discuss the NDE and NIE, the court wrote

The central question in any employment-
discrimination case is whether the employer
would have taken the same action had the em-
ployee been of a different race (age, sex, religion,
national origin, etc.) and everything else had been
the same,

which implies that the twin test is required to evaluate
the discrimination level, and such a court ruling is taken
into account as the unit-level NDE and NIE.

If we have
P (Yx > y) = P (Y > y | x) (4)

for all x and y, then it is said that X and Y are not
confounded (Pearl 2009). Based on this situation, we
define the spurious effect (SE) as follows:
Definition 5 (Spurious Effect). The spurious effect
(SE) on Y > y of comparing X = x1 to X = x0,
denoted by SEy(x1, x0), is defined as

SEy(x1, x0) = TVy(x1, x0) − TEy(x1, x0)
for the risk difference scale, and

SEy(x1, x0) = TVy(x1, x0)/TEy(x1, x0)
for the risk ratio scale assuming TEy(x1, x0) ̸= 0.



Intuitively, equation (4) states that X and Y are not
confounded whenever the observationally witnessed as-
sociation between them is the same as the association
that would be measured in a randomized experiment.
Note that the SE does not depend on the selection of
intermediate variables.

Referring to Zhang and Bareinboim (2018); Plecko
and Bareinboim (2022), the following theorem is
straightforward:
Theorem 1. The TV, NDE, NIE, and SE obey the
following relationships:

TVy(x1, x0) = NDEy(x1, x0|S) + NIEy(x1, x0|S)
+ SEy(x1, x0) (5)

for the risk difference scale, and
TVy(x1, x0) = NDEy(x1, x0|S) × NIEy(x1, x0|S)

× SEy(x1, x0) (6)

for both the risk ratio.
Hereafter, we focus on the risk difference scale be-

cause the risk ratio scale can be written as the risk
difference scale through the logarithm transformation
of the TV, i.e.,
log TVy(x1, x0) = log NDEy(x1, x0|S)

+ log NIEy(x1, x0|S) + log SEy(x1, x0)

from equation (6). From equation (5), if the NDE, NIE,
and SE (or the TE and SE) are zero simultaneously then
TV is also zero. This fact would be useful to detect the
possibility of discrimination from observed data because
TV ̸= 0 implies that at least one of NDE, NIE, and SE
is non-zero. On the contrary, TV = 0 does not imply
that the NDE, NIE, and SE are zero simultaneously,
because of the parametric cancellation. In addition, if
a set {X, Y, S} ∪ Z of observed variables satisfies the
sequential ignorability condition, i.e.,

{Yx,s, Sx′} á X | Z, Yx,s á Sx′ | Z,

Yx,s á S | {X} ∪ Z,

P (x | z) > 0, and P (s | x, z) > 0 for x, x′ ∈ {x1, x0},
then P (Yx > y) and P (Yx,Sx′ > y) are identifiable (Imai
et al. 2011).

Discrimination criteria
In this section, we propose the discrimination criteria
based on the semantics of structural causal models as
follows:
Definition 6 (Causal Discrimination Criteria). Letting
X, S, and Y be a sensitive feature, an intermediate
variable, and an outcome variable, respectively, we say
that

(1) there is no causal direct discrimination not via S if
NDEy(x1, x0|S) = 0 holds for any y,

(2) there is no causal indirect discrimination via S if
NIEy(x1, x0|S) = 0 holds for any y,

(3) there is no spurious discrimination if SEy(x1, x0) =
0 holds for any y.

Here, if the assumption of (1) does not hold, we say
that there is causal direct discrimination not via S. Sim-
ilarly, if the assumption of (2) does not hold, we say
that there is causal indirect discrimination via S. In
addition, if the assumption of (3) does not hold, there
is spurious discrimination. Especially, there is no causal
total discrimination if TEy(x1, x0) = 0 holds; otherwise,
we say that there is causal total discrimination.

The sequential ignorability condition plays an im-
portant role in clarifying the difference between causal
discrimination criteria and the existing statistical dis-
crimination criteria. To see this, assuming that Z is
empty in the sequential ignorability condition, note
that NDEy(x1, x0|S) is zero if X á Y | S holds and
NIEy(x1, x0|S) is zero if X á S or S á Y | X holds.
Based on the consideration, we propose statistical dis-
crimination criteria as follows:
Definition 7 (Statistical Discrimination Criteria (I)).
Letting X, W and Y be a sensitive feature, a set of
non-sensitive features, and an outcome variable, respec-
tively, we say that

(1) there is no statistical direct discrimination given W
if X á Y | W , X ̸áW , and W ̸á Y | X hold,

(2) there is no statistical indirect discrimination given
W if X áW or W á Y | X holds.

Statistical discrimination criteria (I) is similar to
Wang and Taylor’s criteria for validating surrogate end-
points (Wang and Taylor 2002) in the context of ran-
domized clinical trials (RCTs). Especially, Kamishima
et al. (2012) introduced the condition of W ̸á Y | X
as the statistical concept of “direct prejudice” into
discrimination-aware data mining.

Statistical discrimination criteria (I) can be consid-
ered to reflect statistical aspect of causal discrimina-
tion criteria through the sequential ignorability condi-
tion. Contrary, to derive statistical discrimination cri-
teria which refer to the existing discrimination crite-
ria, according to Kamishima et al. (2012) and Žliobaitė
(2017), consider the following conditions:

(1) The probabilities of the outcome variable are equal
for all possible values taken by the sensitive feature.
Statistically, this is interpreted as X á Y .

(2) The probabilities of the outcome variable are equal
for all possible values taken by the sensitive feature
given a specific value of a non-sensitive feature. Sta-
tistically, this is interpreted as X á Y | W .

The condition of X á Y is called the independence
criterion in the sense that the information on X is not
necessary to predict Y . Meanwhile, the condition of
X á Y | W is called the sufficiency criterion in the
sense that we do not need to see X when we know W to
predict Y . Here, note that these discrimination criteria
do not consider the statistical dependence between X
and W . To solve the problem, consider statistical con-
ditions of X ̸á W and Y ̸á W which are introduced
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Figure 1: Graphical representations of statistical discrimination criteria (I) and (II): (a) no indirect discrimination;
(b) no indirect discrimination by statistical discrimination criteria (I), but inseparable discrimination by statistical
discrimination criteria (II); (c) inseparable discrimination; and (d) no direct discrimination.

as the concepts of “latent prejudice” and “indirect prej-
udice”, respectively, by Kamishima et al. (2012). Then,
we re-define the existing statistical discrimination cri-
teria as follows:
Definition 8 (Statistical Discrimination Criteria (II)).
Letting X, W , and Y be a sensitive feature, a set of
non-sensitive features, and an outcome variable, respec-
tively, we say that

(1) there is no statistical direct discrimination given W ,
if X á Y | W , X ̸áW , and W ̸á Y hold,

(2) there is no statistical indirect discrimination given
W , if X áW or W á Y holds.

Statistical discrimination criteria (II) is similar to
Prentice’s criteria for validating surrogate endpoints
(Prentice 1989) in RCTs.

When W is an intermediate variable, the difference
between statistical discrimination criteria (I) and (II)
can be clarified in a causal diagram (Pearl 2009) that
illustrates the direct and indirect effects via different
paths between X and Y (see Figure 1). In this setting,
using either statistical discrimination criteria, Figure 1a
and 1d show the situations judged as no indirect and
no direct discrimination, respectively. In contrast, Fig-
ure 1b shows the situation judged as no indirect dis-
crimination from statistical discrimination criteria (I),
but as both direct and indirect discrimination from sta-
tistical discrimination criteria (II), because W ̸á Y ,
X ̸á Y | W , and W á Y | X hold. This consideration
implies that causal discrimination criteria and the ex-
isting statistical discrimination criteria are derived from
the different motivations for a sensitive feature, even if
no unmeasured confounders exist.

Contrary, regarding the equivalence between statis-
tical discrimination criteria (I) and (II), the following
theorem is derived:
Theorem 2. When the probabilities of X, Y , and W
are strictly positive and X ̸á Y and X á Y | W hold,
there is no statistical direct discrimination given W in
the sense of both statistical discrimination criteria (I)
and (II).

Proof. Assuming that the probabilities of X, Y , and W
are strictly positive and X á Y | W holds, then W á
Y | X and X á Y | W imply that {X, W } á Y by the
intersection property (Pearl 1988), which induces both
X á Y and W á Y from the decomposition property
(Pearl 1988). However, as both X ̸á Y and X á Y |
W are assumed, W ̸á Y | X holds by contraposition.

X á Y | W X ̸á Y | W

W á Y | X W á̸ Y | X W á Y | X W á̸ Y | X

X áW — — NI NI
X ̸áW — ND NI ID

(a) Statistical discrimination criteria (I).

X á Y | W X á̸ Y | W

W á Y W ̸á Y W á Y W ̸á Y

X áW — — NI NI
X ̸áW — ND NI ID

(b) Statistical discrimination criteria (II).

Table 1: Comparison between statistical discrimina-
tion criteria (I) and (II). “ND”, “NI”, “ID”, and “—”
mean no direct discrimination, no indirect discrimina-
tion, both direct and indirect discrimination, and con-
tradiction against X á̸ Y , respectively.

Similarly, W á Y and X á Y | W imply {X, W } á
Y by the contraction property (Pearl 1988). As both
X ̸á Y and X á Y | W are assumed, W ̸á Y also
holds by contraposition. Finally, if both X á Y | W
and X á W imply X á {Y, W } by the contraction
property (Pearl 1988). However, from the assumption
of both X ̸á Y and X á Y | W , X ̸á W holds by
contraposition.

Under the assumption of X á̸ Y , the relationships
between statistical dependencies and statistical discrim-
ination criteria (I) and (II) are shown in Table 1a and
1b, respectively. Table 1 demonstrates that the statis-
tical judgment of direct, indirect, or both direct and
indirect discrimination depends on which criteria are
used to detect or explain how discrimination occurs.

Theorem 2 does not mean that there are both di-
rect and indirect discrimination in the sense of sta-
tistical discrimination criteria (I) if and only if there
are both direct and indirect discrimination in the sense
of statistical discrimination criteria (II). Based on the
consideration, by introducing the separation criterion
X áW | Y (Zafar et al. 2017), the equivalence condi-
tion between statistical discrimination criteria (I) and
(II) is derived as follows:
Theorem 3. When the probabilities of X, Y , and W
are strictly positive and X á W | Y holds under the



assumption X ̸á Y , statistical discrimination criteria
(I) and (II) are equivalent.

Proof. The combination of W á Y | X and X áW |
Y induces W á {X, Y } by the intersection property
(Pearl 1988). Similarly, the combination of W á Y and
X á W | Y induces W á {X, Y } by the contraction
property (Pearl 1988). In addition, the combination of
X á Y | W and X á W | Y induces X á {W , Y }
by the intersection property (Pearl 1988). However, as
X ̸á Y holds, X ̸á Y | W can be derived by the
contradiction. This implies that there is direct discrim-
ination. Thus, under the assumption that both X á̸ Y
and X áW | Y hold, X áW implies that there is no
indirect discrimination in the sense of both statistical
discrimination criteria (I) and (II), and X á̸W implies
that there are both direct and indirect discrimination
in the sense of both statistical discrimination criteria
(I) and (II).

Proportion measures of discrimination
In actual situations, it would be rare to strictly satisfy
causal discrimination criteria so that it is reasonable
to evaluate the discrimination level representing how
much of discrimination is based on the sensitive feature
directly, indirectly or totally. However, most of the ex-
isting discrimination measures cannot be interpreted as
the “proportion” in the mathematical meaning and thus
may not provide the comparable evaluation of the dis-
crimination level, because they are formulated based on
the different target populations. To solve the problem,
we propose three types of novel proportion measures
of discrimination: the proportion of the TV explained
by direct discrimination (PTVdirect), the proportion of
total discrimination explained by direct discrimination
(PTDdirect), and the proportion of the TV explained
by total discrimination (PTVtotal). These measures are
defined as follows:

PTVdirect
y (x1, x0|S)

= NDEy(x1, x0|S)2

SEy(x1, x0)2 + NIEy(x1, x0|S)2 + NDEy(x1, x0|S)2

(7)
PTDdirect

y (x1, x0|S)

= NDEy(x1, x0|S)2

NIEy(x1, x0|S)2 + NDEy(x1, x0|S)2 (8)

PTVtotal
y (x1, x0) = TEy(x1, x0)2

SEy(x1, x0)2 + TEy(x1, x0)2 , (9)

where 0/0 is defined as 0 in this paper. As seen from
equations (7), (8), and (9), the proposed discrimination
measures are defined based on a single target popula-
tion, and always fall inside the range [0, 1] without any
assumptions.

The higher values of the proposed discrimination
measures show a more severe situation in the sense that

Figure 2: Motivating idea of the proposed discrimina-
tion measures.

most part of discrimination is attributed to the sensi-
tive feature alone and thus may not be removable by
adjusting the non-sensitive features (in this paper, “se-
vere” does not always mean the degree of social seri-
ousness based on the sensitive feature). In this sense,
the proposed discrimination measures help us to clas-
sify the severity of discrimination, as shown in the last
part of this section. In addition, the proposed discrimi-
nation measures are applicable to evaluating how much
of discrimination is explained by causal direct or total
discrimination, in order to judge whether or not the
discrimination-unaware data mining algorithm is ap-
propriate to analyze observed data.

Here, it would be worthwhile to state that the mo-
tivating idea behind the proposed discrimination mea-
sures comes from the similarity measure used in cluster
analysis, i.e., the cosine similarities between the TV and
the NDE and between the TE and the NDE, as shown
in Figure 2. Letting TV, TE, and NDE correspond to
the vectors (nde, nie, se), (nde, nie, 0), and (nde, 0, 0),
respectively, the cosine similarities between the TV and
the NDE and between the TE and the NDE correspond
to PTVdirect

y (x1, x0|S) and PTDdirect
y (x1, x0|S), respec-

tively. Indeed, denoting the angle between the TV and
the NDE as θ1, which is the angle between the vectors
(nde, nie, se) and (nde, 0, 0) and the angle between the
TE and the NDE as θ2, which is the angle between the
vectors (nde, nie, 0) and (nde, 0, 0), we have

PTVdirect
y (x1, x0|S) = cos2 θ1,

PTDdirect
y (x1, x0|S) = cos2 θ2.

Then, letting θ3 be the angle between (nde, nie, se)
and (nde, nie, 0.0), which is interpreted as the an-
gle between the TV and the TE, we have cos2 θ1 =
cos2 θ2 cos2 θ3, i.e.,

PTVdirect
y (x1, x0|S) = PTDdirect

y (x1, x0|S) cos2 θ3

from “Theorem of Three Perpendiculars”. This shows
that these discrimination measures are not sufficient for
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Figure 3: PTVtotal versus TE graph for TV = 1.000
and TE = (−1.500, 2.500). ■ and • indicate inflection
and jerk points, respectively.

determining each other, but are not entirely indepen-
dent. In addition, cos2 θ3 can be considered as another
discrimination measure representing the proportion of
the TV explained by total discrimination.

From a mathematical viewpoint, unlike the exist-
ing discrimination measures, the proposed discrimina-
tion measures can provide cut-off values for judging the
severity class of discrimination based on the derivatives
of PTDdirect and PTVtotal. To see this, we consider
that PTVtotal is a function of the TEy(x1, x0)(= TE)
for a given value of the TVy(x1, x0)(= TV). Then,
the inflection points of the function are obtained when

TE = 1
2TV, 1 ±

√
3

2 TV by taking the second derivative
of PTVtotal with respect to TE. The jerk points of the

function are obtained when TE = 1√
2

TV, 2 ±
√

2
2 TV

by taking the third derivative of PTVtotal with re-
spect to TE. With this consideration, we suggest sev-
eral severity classes of discrimination shown in Figure 3.
As the ranges of “substantial” and “moderate” may be
considered practically too wide, noting that the fourth
derivative of the PTVtotal does not provide the value
in the range [0.500, 0.854) or [0.146, 0.500), we divide
the range [0.500, 0.854) into two parts, [0.500, 0.634)
and [0.634, 0.854) based on the fifth derivative of the
PTVtotal. Similarly, we divide the range [0.146, 0.500)
into two parts, [0.146, 0.366) and [0.366, 0.500). Con-
sidering the sampling variability, it would be better to
judge the severity class of discrimination by comparing
the upper/lower limits of the confidence intervals of the
discrimination measures with Figure 3, rather than the
point estimates.

Application
We apply the discrimination measures to the Adult
Census Dataset, available from the UCI Repository
of Machine Learning Databases (Becker and Kohavi

1996). The data consists of 1994 census information in
the US. The Adult Census Dataset contains 48,842 in-
stances with 6 numerical and 8 categorical features. A
predictive model developed on this data was expected
to determine whether a person’s income makes over 50K
a year.

The individual’s income Y is a dichotomous outcome
variable indicating whether a person’s income makes
over 50,000 a year, i.e., his/her income above 50,000
(Y = y1) or below 50,000 (Y = y0). Following Hamil-
ton (2017), “sex” is considered as a sensitive feature X.
Here, X = x1 indicates the disadvantaged group (fe-
male for “sex”) and X = x0 indicates the advantaged
group (male for “sex”). For details, refer to Hamilton
(2017).

In order to evaluate the discrimination measures, un-
der the sequential ignorability condition, we assume the
logistic regression model of Y on X and W as a pre-
dictive model:

P (Y = y1 | X = x, W = w)

= 1
1 + exp{−(θ0 + θxx + θ⊤

w w)} ,

where (θ0, θx, θ⊤
w )⊤ is a coefficients vector of the logistic

regression model and W includes 13 features (exclud-
ing the sensitive feature X). In this scenario, the per-
formances of the existing and proposed discrimination
measures are listed in Table 2. Here, the normalized
mean difference (NMD) is a representative discrimina-
tion measure, whereas “slift” and “elift” are known as
the impact (risk) ratio and the ratio of additive inter-
actions, respectively (Žliobaitė 2017). In addition, Ta-
ble 2 shows the sample estimates from the original data
(denoted by “estimate”), the standard errors (denoted
by “s.e.”) and the 95% bootstrap confidence intervals
(CIs) (denoted by “lcl” for the lower confidence limits,
and “ucl” for the upper confidence limits) evaluated by
2,000 bootstrap replications.

From Table 2, the 95% CIs of the TV and NMD do
not include zero, and the 95% CIs of the slift and elift do
not include one. It seems that the association between
the sensitive feature and the outcome is statistically sig-
nificant, and thus we can consider that X á̸ Y holds.
However, from the existing discrimination measures, it
is uncertain how much of discrimination is based on
the sensitive feature not via non-sensitive features. On
the contrary, the estimates of the PTDdirect, PTVdirect,
and PTVtotal show that most of total discrimination
and total variation are based on the sensitive feature
directly and totally. In addition, the 95% lower confi-
dence limits of PTDdirect, PTVdirect, and PTVtotal are
above 0.854. This shows that “sex” may be judged as
“severe”, “almost critical” or “critical” sensitive feature
from the viewpoint of the proposed measures.

Conclusion
Most of the existing measures proposed for discrimina-
tion-aware data mining have the deficiencies stated in



TV NMD slift elift PTDdirect PTVdirect PTDtotal

estimate −0.196 0.545 0.358 1.270 0.935 0.934 1.000
s.e. 0.004 0.011 0.010 0.006 0.038 0.042 0.029
lcl −0.197 0.545 0.358 1.269 0.922 0.914 0.977

mean −0.196 0.545 0.358 1.270 0.924 0.916 0.978
ucl −0.196 0.546 0.359 1.270 0.926 0.917 0.980

Table 2: Summary statistics of the discrimination measures from Adult Census Dataset.

Section . To overcome these deficiencies, we proposed
causal discrimination measures based on the natural di-
rect and indirect effects. The proposed discrimination
measures are not estimable from observed data with-
out causal knowledge, but the bounding formulas for
the causal quantities (e.g., Balke and Pearl 1997; Cai
et al. 2008) would play an important role in evaluating
the discrimination level. In addition, although Zhang
and Bareinboim (2018) introduced the idea of the ef-
fect decomposition based on the “effect of treatment on
the treated” into discrimination-aware data mining, the
application of our results to their framework is straight-
forward.
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