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Abstract

This paper examines the computational and sample complex-
ity of answering k-wise statistical queries, which were intro-
duced by by Feldman and Ghazi (2017) as a generalization
to the standard statistical query model of Kearns (1998). In
particular, our paper studies two sample reuse schemes: (1)
reusing independent “pseudo-samples” for adaptive queries
and (2) reusing dependent k-wise samples for non-adaptive
queries. Comparing to a baseline non-reuse strategy, we show
that the first reuse method offers a trade-off between k, the
arity of the query, and M , the total number of queries to be
answered. We also show that the second reuse method per-
forms no worse than the baseline, and possibly better, from
the perspective of variance reduction.

Introduction

In this paper we study the sample complexity of answer-
ing M different k-wise statistical queries. k-wise statistical
queries are a generalization of the statistical query model
introduced by Kearns (1998) and widely studied there-
after (Blum et al. 1994; Blum, Kalai, and Wasserman 2003).
Whereas statistical queries look at the expectation of a func-
tion q : X → {0, 1} from one data point onto a binary
domain, k-wise queries q : Xk → {0, 1} take a sample of
size k ≥ 1. The importance of being able to answer k-wise
queries for larger values of k is illustrated by Feldman and
Ghazi (2017), who showed that as k increases, strictly more
problems can be solved using k-wise queries.

Known methods for answering statistical queries (SQs)
include strategies ranging from straightforward sampling
methods to more involved approaches involving principled
sample reuse from the perspective of adaptive data analy-
sis (Dwork et al. 2015). In this paper we analyze these vary-
ing approaches for the more general k-wise case and find a
trade-off in which method is best depending on the relative
values of k, the arity of the query, and M , the total number
of queries to be answered. We also give a different view for
a known strategy for sample reuse, and show that it performs
no worse than the original non-reuse strategy, and possibly
better.

There are two natural ways to improve beyond the

straightforward sampling approach: (1) reuse independent
pseudo-samples for adaptive queries and (2) reuse depen-
dent k-wise samples for non-adaptive queries. Here each
pseudo-sample is composed by drawing k i.i.d points from
the sample domain, so pseudo-samples are mutually inde-
pendent and identically distributed according to the product
distribution. Intuitively, the first method reuses the same set
of i.i.d. pseudo-samples among all queries, while the second
method draws a new set of points for each query and takes
all possible size k subsets to create dependent k-wise sam-
ples. It is worth noting that we are only concerned with the
case with adaptive queries for method (1), since results for
non-adaptive queries are already given by VC theory.

In the remaining parts of the paper, we shall provide rig-
orous statements of definitions and useful technical tools
in Preliminaries, introduce the naive sampling approach in
Baseline simulation of an SQ oracle, and then discuss results
of the two sample reuse methods in the last two sections.

Preliminaries

We first give the definition of a k-wise SQ oracle.
Definition 1. (Feldman and Ghazi 2017) Let D be a dis-
tribution over a domain X and τ > 0. A k-wise statistical
query oracle STAT(k)

D (ϕ, τ) is an oracle that given as input
any query function ϕ : Xk → {0, 1} and a value τ , returns
some value v such that |v − Ex∼Dk [ϕ(x)]| ≤ τ .

The general goal in statistical query learning, as originally
defined by Kearns (1998) is to learn a target class of func-
tions efficiently, achieving PAC guarantees while using the
SQ oracle instead of labeled examples. In this case, to effi-
ciently SQ learn a function class, one wants to make a poly-
nomial number of calls to the STAT oracle, using tolerances
τ such that 1

τ is polynomially bounded away from 0, and us-
ing query functions ϕ evaluable in polynomial time. For de-
tailed definitions and more about the SQ model, see Reyzin
(2020).

Next, we are interested in the sensitivity of query func-
tions that are fed to the SQ oracle. The ℓ1-sensitivity of a
query measures the magnitude by which perturbing a single
data point can change the query output in the worst case.



It is an important parameter in determining the algorithm’s
required accuracy when answering queries.

Definition 2 (Dwork and Roth (2014)). The ℓ1-sensitivity of
a function f : N|X| → R is

∆f = max
x,y∈N|X|

∥x−y∥1=1

∥f(x)− f(y)∥1

= max
x,y∈N|X|

∥x−y∥1=1

|X|∑
i=1

|f(xi)− f(yi)|.

One main technique we used to study reusing pseudo-
samples among adaptive queries is the Transfer Theorem
developed in Bassily et al. (2021). The theorem says a dif-
ferentially private learner that is accurate with respect to its
sample generalizes to the population from which the sample
was drawn. Bassily et al. (2021) uses the term “max-KL sta-
bility” to refer to the differential privacy model of (Dwork
et al. 2016), emphasizing it as one of the various notions
of stability in machine learning. We state the definition of
a differentially private learner and the Transfer Theorem as
follows.

Definition 3 (Dwork and Roth (2014)). A randomized algo-
rithmM with domain N|X | is (ε, δ)-differentially private if
for all S ⊆ Range(M) and for all x, y ∈ N|X | such that
∥x− y∥1 ≤ 1:

P[M(x) ∈ S] ≤ exp(ε)Pr[M(y) ∈ S] + δ,

where the probability space is over the randomness ofM.

Before introducing the Transfer Theorem (Lemma 5), let
us define what it means for an algorithm to be accurate with
respect to a collection of samples and with respect to a pop-
ulation.

Definition 4 (Bassily et al. (2021)). A mechanism M is
(α, β)-accurate with respect to samples of size n from X for
M adaptively chosen queries from Φ if for every adversary
A, which gives output (a1, · · · , aM ),

P

max
j∈[M ]

∣∣∣aj − 1

n

∑
i∈[n]

ϕj(xi)
∣∣∣ ≤ α

 ≥ 1− β.

A mechanism M is (α, β)-accurate with respect to the
population for M adaptively chosen queries from Φ given n
samples x ∈ X if for every adversaryA, which gives output
(a1, · · · , aM ),

P
[
max
j∈[M ]

∣∣∣aj − Eϕj(x)
∣∣∣ ≤ α

]
≥ 1− β.

Now we are ready to state the Transfer Theorem.

Lemma 5 (Transfer Theorem, due to Bassily et al. (2021)).
Let Φ be a family of ∆-sensitive queries on Xk. Assume
that for some α, β ∈ (0, 0.1), an algorithm A is

1. (ε′ = α/64∆n, δ′ = αβ/32∆n)-max-KL stable for M
adaptively chosen queries from Φ and

2. (α′ = α/8, β′ = αβ/16∆n)-accurate with respect to
its n samples from Xk for M adaptively chosen queries
from Φ.

Then A is (α, β)-accurate with respect to the population for
M adaptively chosen queries from Φ given n samples from
Xk.

One can achieve the privacy requirement (via max-KL
stability) in the Transfer Theorem through the Laplace
mechanism. Recall that ∆f denotes the ℓ1-sensitivity of
function f . Recall that the Laplace Distribution centered at
0 with scale parameter b has probability density function

Lap(b) =
1

2b
exp

(
−|x|

b

)
.

Definition 6 (Dwork and Roth (2014)). Given any function
f : N|X | → Rk, the Laplace mechanism is defined as:

MK(x, f(·), ε) = f(x) + (Y1, · · · , Yk)

where Yi are i.i.d. random variables drawn from the Laplace
Distribution Lap(∆f/ε).

Let A be an algorithm that calculates the average of
a function ϕ : Xk → {0, 1} over n samples. Suppose
ϕ has ℓ1-sensitivity ∆. After computing the true average
value a, the Laplace mechanism outputs v = a + y where
y ∼ Lap(∆/ε) is drawn from the Laplace distribution with
scale parameter ∆/ε.
Lemma 7 (Dwork and Roth (2014)). For any function
f : N|X | → Rk, the Laplace mechanism guarantees (ε, 0)-
differential privacy.

It is easy to come up with a high probability bound on the
amount of noise added by the Laplace mechanism.
Lemma 8 (Dwork and Roth (2014)). Let f : N|X | → Rk,
and let y =ML(x, f(·), ε). Then ∀δ ∈ (0, 1]:

P
[
∥f(x)− y∥∞ ≥ ln

(
k

δ

)
·
(
∆f

ε

)]
≤ δ.

Baseline simulation of an SQ oracle

In this section we discuss the sample complexity of learn-
ing with k-wise SQs without sample reuse. An algorithm
simulates a k-wise SQ oracle by taking empirical averages.
This simulation is extended from the one given by Kearns
(1998) for (one-wise) SQ oracles. In the k-wise case, to each
query function ϕi the learner feeds it a fresh batch of ñ i.i.d.
pseudo-samples Si = {x1, · · · ,xñ}, where each pseudo-
sample xj = (xj1 , · · ·xjk) consists of k sample points.
Then it computes the empirical average of ϕi(x) over the
set of pseudo-sample Si. With high probability, the empiri-
cal average will fall within the amount of tolerance allowed
by the SQ oracle from the true expectation of ϕi, thanks to
concentration inequalities.



Proposition 9. Suppose there exists an SQ learner that
makes M k-wise statistical queries of tolerance τ to learn
over a class C, then there exists a simulation algorithm,
which does not reuse any samples, for which a set of i.i.d.
samples of size

n = O

(
k
M

τ2
log

(
M

δ

))
is sufficient to PAC learn C with error bounded by ε and
probability of failure bounded by δ.

Proof. We take the specified number of samples and parti-
tion them into

ñ =
n

Mk
= O

(
1

τ2
log

(
M

δ

))
i.i.d. pseudo samples for each query function ϕi. The Ho-
effding bound guarantees that an empirical average over ñ
pseudo samples falls within ±τ from E[ϕi(x)] with proba-
bility ≥ 1− δ

M . Then apply the union bound and we obtain
that with probability ≥ 1 − δ, the empirical average falls
within ±τ from the true expectation for all queries. Hence
we successfully simulate the k-wise SQ learner with high
probability, fulfilling the PAC requirements.

Independent pseudo-samples for adaptive
queries

In this section we discuss reusing independent pseudo-
samples for adaptive queries. Suppose there exists a k-wise
SQ learner that efficiently SQ learns a function class by ask-
ing M adaptive k-wise queries ϕ1, · · · , ϕM . Similar to the
baseline case, our algorithm (Algorithm 1) simulates a k-
wise SQ oracle through taking empirical averages. However,
what is different from the baseline case is that Algorithm 1

Algorithm 1 Reusing Independent Pseudo-samples for
Adaptive Queries
Inputs. Sample points x ∈ X and k-wise Statistical Queries
ϕ1, · · · , ϕM , where ϕi : X

k → {0, 1} for all i ∈ [M ].
Outputs. v ∈ RM .

1: Draw O
(

k2
√
M

τ2 log(Mk
τδ )
)

i.i.d. sample points x ∼ D

to create ñ = O
(

k
√
M

τ2 log(Mk
τδ

)
i.i.d. pseudo-samples

xj = (xj1 , · · · , xjk) ∼ Dk, where j = 1, · · · , ñ.
2: for i = 1, · · · ,M do
3: for j = 1, · · · , ñ do
4: aij ← ϕi(xj)
5: end for
6: Draw Laplace noise y ∼ Lap

(
128k2

√
M

τn

)
.

7: vi ←
(

1
ñ

∑ñ
j=1 aij

)
+ y

8: end for
9: v ← (v1, · · · , vM )

partitions the set of n samples x ∼ D into ñ = n/k parts
to create ñ i.i.d. pseudo-samples x = (x1, · · · , xk) ∼ Dk.
It then reuses the same set of pseudo-samples among all
queries when taking their empirical averages.

Now we state our main sample complexity result. Theo-
rem 10 provides the optimal sample complexity for an al-
gorithm that reuses the same set of independent pseudo-
samples while answering adaptive queries.
Theorem 10. Suppose there exists an SQ learner that makes
M k-wise statistical queries of tolerance τ to learn over
a class C, then there exists a simulation algorithm, which
reuses independent pseudo-samples among the M queries,
for which a set of i.i.d. samples of size

n = O

(
k2
√
M

τ2
log
(
max

{
M,

k

τ

}
1

δ

))

= O

(
k2
√
M

τ2
log
(Mk

τδ

))
is sufficient to PAC learn C with error bounded by ε and
probability of failure bounded by δ.

Comparing Theorem 10 to the naive bound in Proposi-
tion 9, we observe an interesting trade-off between arity of
the query k, and the total number of queries M . The trade-
off suggests that only when a learner uses a large amount
of short queries (k <

√
M ) is it worth to reuse pseudo-

samples.

It is worth noting that Algorithm 1 is specific to k-wise
statistical queries and it differs from approaches that work
for on low-sensitivity queries in general. In addition to hav-
ing low sensitivity, statistical queries and their k-wise gener-
alizations have the additional property that they can be eval-
uated on k points at a time and are therefore amenable to
sampling techniques, which can produce potential speedups
(see Fish, Reyzin, and Rubinstein (2020)). This allows us
to evaluate our queries on pseudo-samples, each of which
consists of k sample points.

So while the sample complexity achieved by Algorithm
1 is no worse than the bound Õ

(√
M
τ2

)
known for general

low sensitivity queries (Bassily et al. 2021), which takes
time poly(n, log |X|) per oracle call, our Algorithm 1 runs
in poly(k, log |X|) time instead of time per call to the or-
acle (assuming polynomial-time evaluability of the respec-
tive queries). This can potentially create a dramatic improve-
ment in running time as the straightforward non-sampling
approach for exactly evaluating a k-wise query on a sample
of n points would be to evaluate it on all k-point subsets,
which is indeed polynomial in n but exponential in k. In
fact, we go on to analyze that particular approach towards
the end of the paper.

In the remaining parts of this section, we first discuss a
couple technical tools used to prove Theorem 10 and then
we give the proof itself.



Privacy composition

To ensure that the simulation generalizes to the sample dis-
tribution, we apply Lemma 5 (Transfer Theorem), which de-
mands the algorithm be differentially private. The algorithm
composes multiple query functions, so in order to achieve
the required level of privacy overall, we need to use results
on privacy composition to figure out what level of privacy is
required for each individual query.

There are two well-known bounds on the privacy of query
composition: simple composition and advanced composi-
tion. Simple composition provides the elementary bound
that, when a learner uses independent queries, its privacy
equals to the sum of privacy of all queries. Advanced
composition deals with the more complicated situation,
one where the learner poses adaptive queries to the same
database repeatedly. We shall see that under appropriate
choice of parameters, advanced composition offers tighter
privacy bound than simple composition (by a factor of

√
M ).

The exact statements of the two composition results are pro-
vided by Lemma 11 and Lemma 12.

Lemma 11 (Simple composition, as presented in Dwork
and Roth (2014)). Let Ai : Xk → {0, 1} be an (εi, δi)-
differentially private algorithm for i = 1, · · · ,M . Then
A = (A1, · · · ,AM ) is

(∑M
i=1 εi,

∑M
i=1 δi

)
-differentially

private.

Lemma 12 (Advanced composition, due to Dwork, Roth-
blum, and Vadhan (2010)). For all ε, δ, δ′ ≥ 0, the class of
(ε, δ)-deferentially private mechanisms satisfies (ε′,Mδ +
δ′)-differentially privacy under M -fold adaptive composi-
tion for

ε′ = ε
√

2M ln(1/δ′) +Mε(eε − 1).

Observe that

ε′ ≤ ε
√
2M ln(1/δ′) +Mε2 = O

(
ε
√

M ln(1/δ′)
)

when ε is small. By choosing δ′ small, say δ′ = 1/e,
we show that the M -fold adaptive composition satisfies
(ε
√
M, δM) - differential privacy (Bassily et al. 2021).

Theorem 10 uses advanced composition of privacy. It is
important to mention that advanced composition is neces-
sary when analyzing pseudo-sample reuse. Since the algo-
rithm uses adaptive queries, it needs to be strict when bud-
geting the privacy level for each query. Otherwise, an excess
amount of Laplace noise would need to be added, which will
overturn the effect of sample reuse. As shown in Theorem
13, if the algorithm composed privacy of the queries as if
they were independent, the resulting sample complexity is
actually worse than the baseline bound.

Theorem 13. Under the setting of Theorem 10, except that
suppose the simulation algorithm treats the M queries as if
they were independent and calculates their overall privacy

through simple composition, a set of i.i.d. samples of size

n = O

(
k2M

τ2
log
(
max

{
M,

k

τ

}
1

δ

))
= O

(
k2M

τ2
log
(Mk

τδ

))
is sufficient to PAC learn C with error bounded by ε and
probability of failure bounded by δ.

We omit the proof for Theorem 13 since it closely resem-
bles that of Theorem 10, with the only difference being the
privacy composition calculations.

Laplace mechanism

Now that we know to use advanced composition, let us
consider how to achieve the desired level of privacy for
each query function. As suggested by Lemma 7, we adopt
Laplace mechanism, the standard technique that offers pri-
vacy guarantee for algorithms.

For each ϕi, Algorithm 1 outputs vi = ai + y, where ai
is the empirical average of ϕi over a large set of pseudo-
samples and y is a small Laplace noise parameter. There are
two key considerations when choosing the parameters. First,
the sample set needs to be large enough so that the empirical
average is close to the true expectation with high probability.
Second, the Laplace noise needs to be small enough so that it
does not steer the empirical average away from the expected
average too far, but in the meantime still large enough to
maintain privacy.

Using Lemma 7, we choose y ∼ Lap(∆ · 128kτ ), which
preserves ( τ

128k , 0)-differential privacy for each query, sur-
passing the requirement of the Transfer Theorem (Lemma
5). Here ∆ is the ℓ1-sensitivity of the empirical average of ϕ
over all pseudo-samples. In an attempt to simplify the writ-
ing, we abuse notation and use ∆ϕ to represent the afore-
mentioned ℓ1-sensitivity.
Proposition 14. The ℓ1-sensitivity of the empirical average
of ϕ : Xk → {0, 1} is ∆ϕ ≤ k

n .

Proof. Among all pseudo-samples xi ∈ S and x′
i ∈ S′

where i = 1, · · · , ñ, exactly one pair is different xj ̸= x′
j .

Then |ϕ(xi) − ϕ(x′
i)| = 0 for all i ̸= j, while |ϕ(xj) −

ϕ(x′
j)| ≤ 1. Therefore,

∆ϕ = max
S,S′⊆Xk

s.t. ∥S−S′∥1=1

∥∥∥∥∥ 1ñ
ñ∑

i=1

(
ϕ(xi)− ϕ(x′

i)
)∥∥∥∥∥

1

,

which can trivially be bounded as ∆ϕ ≤ 1/ñ = k/n.

Proof of Theorem 10

Given an efficient k-wise SQ learner that learns C approx-
imately correct (to an error ε), the empirical average sim-
ulation wishes to mimic the learner’s query outputs with



high probability. In the language of the Transfer Theorem
(Lemma 5), that is to say the simulator needs to be (τ, δ)-
accurate with respect to the population. We prove Theorem
10 using the Transfer Theorem.

Proof of Theorem 10. Given the total allowed error of τ ,
we allocate τ/2 to the empirical average and τ/2 to the
added Laplace noise. We first analyze the empirical average.
To achieve (τ/2, δ)-accuracy with respect to the population
for M adaptively chosen queries, the Transfer Theorem de-
mands

(i) the simulation is
(

τ
128k ,

τδ
64k

)
-differentially private for M

adaptive queries,

(ii) the simulation is
(

τ
16 ,

τδ
32k

)
-accurate with respect to n

samples for M adaptive queries.

To satisfy (i), we adopt advanced composition. Accord-
ing to Lemma 12, each of the M queries needs to be(

τ
128k

√
M
, τδ
64kM

)
-differentially private to obtain the com-

posed privacy stated in (i). We know each query has ℓ1-
sensitivity k/n through Lemma 14. Then following the stan-
dard technique stated in Lemma 7, we add Laplace noise
of scale 128k2

√
M

τn to each query average, which achieves(
τ

128k
√
M
, 0
)

-differential privacy, surpassing the needed
amount. Lemma 8 verifies that the added Laplace noise
is bounded above by 128k2

√
M

τn log 2M
δ with probability ≥

1 − δ
2M . In order to restrict the Laplace noise within τ/2

with high probability, we ask that

128k2
√
M

τn
log

2M

δ
≤ τ

2
,

which implies that

n = O

(
k2
√
M

τ2
log

M

δ

)
(1)

is sufficient. Now let us consider (ii). It suffices to show that
for all queries ϕi, the simulator’s output ai satisfies

P
[
|errx(ϕi, ai)| ≤

τ

16

]
≥ 1− τδ

32k
.

We know that

ai =
1

ñ

ñ∑
j=1

ϕi(xj) + Lap

(
128k

√
M

τñ

)
,

so for all i,

|errx(ϕi, ai)| = |ai − ϕi(x)|

=

∣∣∣∣∣∣ai − 1

ñ

ñ∑
j=1

ϕi(xj)

∣∣∣∣∣∣
= Lap

(
128k

√
M

τñ

)
.

According to Lemma 8, it is easy to verify that with
probability ≥ 1 − τδ

32k , the Laplace noise of scale
128k

√
M

τñ is O(k
2
√
M

τn log k
τδ ). To satisfy (ii), we ask that

128k2
√
M

τn log 32k
τδ ≤

τ
16 , which implies an

n = O

(
k2
√
M

τ2
log

k

τδ

)
(2)

is sufficient. Combining inequalities (1) and (2), we get

n =O

(
max

{
k2
√
M

τ2
log

M

δ
,
k2
√
M

τ2
log

k

τδ

})

= O

(
k2
√
M

τ2
log
(
max

{
M,

k

τ

}
1

δ

))

= O

(
k2
√
M

τ2
log
(Mk

τδ

))
,

completing the proof.

Dependent k-wise samples for non-adaptive
queries

Now we examine the second reuse method. Algorithm 2
draws n i.i.d. sample points x ∼ X and partitions them into
M equal parts, S1, · · · , SM , to be used by M queries. De-
note the size of each part |Si| = n̂, so the total number of
samples is n = Mn̂. For each query, the algorithm calcu-
lates its empirical average over

(
n̂
k

)
k-wise samples, which

are generated by taking all size k subsets of Si.

Algorithm 2 Dependent k-wise Samples for Non-adaptive
Queries
Inputs. Sample points x ∈ X and k-wise Statistical Queries
ϕi : X

k → {0, 1}, where i = 1, · · · ,M .
Outputs. v = (v1, · · · , vM ) ∈ RM .

1: Draw n i.i.d. sample points x ∼ D and partition them
into M equal parts S1, · · · , SM , where |Si| = n̂.

2: for i = 1, · · · ,M do
3: Take all size k subsets of Si to create k-wise samples

xj = (xj1 , · · · , xjk), where j = 1, · · · ,
(
n̂
k

)
.

4: Compute the empirical average of ϕi

vi ← 1
n̂

∑(n̂k)
j=1 ϕi(xj).

5: end for
6: v ← (v1, · · · , vM ).

In contrast to creating independent pseudo-samples, Al-
gorithm 2 uses all k-subsets of the provided sample set,
yielding additional k-wise samples, although it fails to main-
tain their independence since each point contributes to (k −
1) samples.

We can analyze the dependent k-wise samples from the
perspective of a hypergraph. In the language of hypergraphs,



we can think of each sample point as a vertex and each k-
wise sample as a k-hyperedge. The learner is given Kk

n, a
complete hypergraph on n vertices, whose hyperedges con-
tain k vertices (k divides n). The learner uses k-hyperedges
as inputs to the queries. Notice that the hyperedges are not
independent with each other. Fortunately, we can bypass the
hyperedge dependence through Baranyai’s Theorem.
Theorem 15 (Baranyai (1974)). Every Kk

n hypergraph de-
composes into a disjoint collection of 1-factors.

Recall that a 1-factor is a set of hyperedges that touch
each vertex in Kk

n exactly once. Intuitively, we can think
of a 1-factor as a perfect matching. With the guarantee of
decomposition given by Baranyai’s Theorem, we are able to
interpret the collection of dependent hyperedges as a set of
perfect matchings. Although these matchings are dependent
on one another, they each contain independent hyperedges
within themselves. Figure 1 gives an example of when n = 6
and k = 2. As shown by Figure 1, K2

6 can be decomposed
into a disjoint union of 1-factors, each of which consists of
three mutually independent edges.

Figure 1: An illustration of a decomposition of K2
6 into five

disjoint perfect matchings

How well do dependent k-wise samples perform when
we use them to estimate the expected value through empir-
ical average? In each 1-factor, the independent hyperedges
act like pseudo-samples introduced in Algorithm 1. Accord-
ingly, in Theorem 16 we provide accuracy bounds of de-
pendent k-wise samples by comparing its variance to that of
independent pseudo-samples.

To set up Theorem 16, let ϕ : Xk → {0, 1} be a k-wise
statistical query, S be a set of samples x ∼ D, and sup-
pose |S| = n, where k divides n. Let Yp, Ya be random
variables that represent the empirical average of ϕ under the
two sampling schemes respectively: creating n/k indepen-
dent pseudo-samples and taking all

(
n
k

)
k-subsets of S. The

expected value of Yp and Ya both equal to E(ϕ).
Theorem 16. The variance of Yp and Ya satisfy

1(
n−1
k−1

)Var(Yp) ≤ Var(Ya) ≤ Var(Yp).

Proof. We first study the upper bound. Construct a complete
hypergraph Kk

n with the given n sample points. With guar-
antee from Baranyai’s theorem, we can decompose Kk

n into
1-factors G1, · · · , Gm, where m =

(
n−1
k−1

)
. Each Gi contains

n/k i.i.d. hyperedges of length k. The vertices in these i.i.d.
hyperedges form i.i.d. pseudo-samples used in Algorithm 1.

Let YGi be a random variable that represents the empirical
average of ϕ over pseudo-samples in Gi. By previous anal-
ysis, we know for all i = 1, · · · ,

(
n−1
k−1

)
,

Var(Yp) = Var(YGi).

Observe that taking an empirical average over all
(
n
k

)
hy-

peredges in Kk
n is equivalent to taking an average of all the

empirical averages over G1, · · · , Gm. Therefore,

Var(Ya) = Var

(
1

m

m∑
i=1

YGi

)
.

Since YGi
are i.i.d. random variables, we can denote

Var(YGi
) = σ2 for all i = 1, · · · ,m. Then we can prove

the upper bound

Var(Ya) = Var

(
1

m

m∑
i=1

YGi

)

=
1

m2

∑
i

Var(YGi
) +

∑
i ̸=j

Cov(YGi
, YGj

)


≤ 1

m2

(
mσ2 + (m2 −m)

√
σ2σ2

)
= σ2.

The inequality uses the well-known fact that for any two ran-
dom variables Xi, Xj ,

Cov(Xi, Xj) ≤
√

Var(Xi)Var(Xj).

The lower bound follows similar reasoning.

Var(Ya) =
1

m2

∑
i

Var(YGi
) +

∑
i ̸=j

Cov(YGi
, YGj

)


≥ 1

m2

m∑
i

σ2

=
σ2

m
.

This completes the proof.

Therefore, we find that while Algorithm 2 may take
longer to run than baseline sampling (due to its exponential
dependence on k), the variance in its estimates will never
be worse, which should lead to an improved (or at least not
degraded) sample complexity.

We note that our analysis in this section corresponds to
exact evaluation of k-wise statistical queries. If we added
e.g. Laplace noise to achieve stability of this mechanism,
this would be closer to the approach of (Bassily et al. 2021)
for adaptive data reuse. We forgo this analysis, as our goal
herein is to compare this approach to baseline sampling.
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