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Abstract

Both the Schulze and the ranked pairs method are voting sys-
tems that satisfy many natural, desirable axioms. Many stan-
dard types of electoral control (where an external agent tries
to change the outcome of an election by interfering with the
election structure) have already been studied for them. How-
ever, for control by replacing candidates or voters and for
multimode control that combines multiple standard attacks,
many questions remain open. We solve a number of these
open cases for Schulze and ranked pairs. In addition, we fix a
flaw in the reduction of (Menton and Singh 2013, Thm. 2.2)
showing that Schulze is resistant to constructive control by
deleting candidates.

Introduction
Elections play a fundamental role in decision-making pro-
cesses of modern societies and over time many voting sys-
tems have been established. The Schulze method (Schulze
2011, 2023) is a relatively new voting system and has gained
unusual popularity over the past two decades due to its out-
standing axiomatic properties. Although winner determina-
tion with the Schulze method is fairly complicated compared
to most other voting systems, it can still be computed in
polynomial time (Schulze 2011).

The ranked pairs method was specifically de-
signed by Tideman (Tideman 1987) to satisfy the
independence of clones criterion. In general, its axiomatic
properties are as outstanding as Schulze’s. However,
that ranked pairs is barely widespread might be due
to the fact that winner determination depends strongly
on the handling of ties: When using “parallel universe
tie-breaking” (Conitzer, Rognlie, and Xia 2009), the win-
ner determination problem is NP-complete. It becomes
tractable, however, when defining ranked pairs as a resolute
rule by using a fixed tie-breaking method (Brill and Fischer
2012).

We study electoral control where a so-called (election)
chair attempts to change the outcome of an election by
changing its structure. Common examples are adding, delet-
ing, partitioning (Bartholdi III, Tovey, and Trick 1992;
Hemaspaandra, Hemaspaandra, and Rothe 2007), or replac-
ing (Loreggia et al. 2015) candidates or voters. In addition,
we also study multimode control (Faliszewski, Hemaspaan-
dra, and Hemaspaandra 2011) where the chair can combine

several attacks. For each corresponding decision problem,
there is a constructive case (Bartholdi III, Tovey, and Trick
1992), where the goal is to make a favored candidate win,
and a destructive case (Hemaspaandra, Hemaspaandra, and
Rothe 2007), where the chair’s aim is to prevent a despised
candidate from winning.

Related Work Electoral control was introduced by
Bartholdi et al. (Bartholdi III, Tovey, and Trick 1992) for
the constructive cases and later on by Hemaspaandra et
al. (Hemaspaandra, Hemaspaandra, and Rothe 2007) for
the destructive cases. Control by replacing candidates or
voters was introduced by Loreggia et al. (Loreggia et al.
2015), while Faliszewski et al. (Faliszewski, Hemaspaandra,
and Hemaspaandra 2011) introduced and studied multimode
control. Erdélyi et al. (Erdélyi et al. 2021) provide an ex-
tensive study and overview of various control problems, in-
cluding replacing candidates or voters, and also multimode
control. Other types of strategic influence on elections are
manipulation and bribery (see, e.g., (Bartholdi III and Or-
lin 1991; Bartholdi III, Tovey, and Trick 1989; Conitzer and
Sandholm 2006; Faliszewski, Hemaspaandra, and Hema-
spaandra 2009; Faliszewski et al. 2009)). Control, bribery,
and manipulation have been studied for a wide range of
voting rules, as surveyed by Faliszwski and Rothe (Fal-
iszewski and Rothe 2016) (bribery and control) and Conitzer
and Walsh (Conitzer and Walsh 2016) (manipulation), see
also (Baumeister and Rothe 2015).

For Schulze and ranked pairs, Parkes and Xia (Parkes
and Xia 2012), Xia et al. (Xia et al. 2009), Menton and
Singh (Menton and Singh 2013) and Gaspers et al. (Gaspers
et al. 2013) studied constructive and destructive control by
adding or deleting voters or candidates, bribery, and manip-
ulation. Table 1 gives an overview of known results. Hema-
spaandra et al. (Hemaspaandra, Lavaee, and Menton 2013)
showed fixed-parameter tractability for bribing, controlling,
and manipulating Schulze and ranked pairs elections with
respect to the number of candidates and provided algorithms
with uniform polynomial running time that are independent
of the number of candidates. Menton and Singh (Menton
and Singh 2013) also provided results on control by partition
and runoff partition of candidates and partition of voters for
Schulze and further showed some results for all Condorcet-
consistent voting rules.



Table 1: Overview of results on the complexity of standard
control (AC, DC, AV, DV), bribery (B), and manipulation
(M) in Schulze and ranked pairs elections. R means resis-
tance, V vulnerability, S susceptibility (as defined at the
end of the Prelimiaries); our results are in blue. Results
marked by ♠ are due to Parkes and Xia (Parkes and Xia
2012), by � first claimed to be V, then withdrawn by Men-
ton and Singh (Menton and Singh 2012) and for DC now
re-established in Theorem 5, and by ♣ due to Xia et al. (Xia
et al. 2009).Fmarks a result by Parkes and Xia (Parkes and
Xia 2012), extended by Gaspers et al. (Gaspers et al. 2013).
The original proof of Menton and Singh (Menton and Singh
2013) for the result marked by ♦ is disproven and fixed in
the proof of Theorem 1.

AC DC AV DV B M

Schulze Constructive R♠ R♦ R♠ R♠ R♠ VF

Destructive S� V� R♠ R♠ R♠ V♠

Ranked pairs Constructive R♠ R♠ R♠ R♠ R♠ R♣

Destructive R♠ R♠ R♠ R♠ R♠ R♣

Preliminaries
An election is a pair (C, V ), where C = {c1, . . . , cm} is a
set of candidates and V is a list of n votes in form of prefer-
ences over all candidates in C. Preferences can be expressed
either as approval sets or as preference orders. In this pa-
per, we focus on the latter, where voters rank the candidates
in descending order from most to least preferred. Formally,
a preference order is a strict linear order over C. We write
c �vi d to express that a voter vi ∈ V prefers candidate
c over d. When it is clear from the context, we omit �vi
and simply write c d. For a set of candidates A ⊆ C, we
refer to the lexicographic order of those candidates by sim-
ply writing

−→
A , and

←−
A for the reverse. If only A occurs in

a vote, the candidates from A are ranked in lexicographic
order. For example, cA is the same as c

−→
A and denotes the

vote that ranks c first and then all candidates from A fol-
low in lexicographic order. For a set of candidates C and
two candidates c, d ∈ C, we will write W (c, d) for the two
votes c d

−−−−−−→
C \ {c, d} and

←−−−−−−
C \ {c, d} c d. For a given election

(C, V ), let NV (c, d) be the number of votes, in which can-
didate c is ranked above candidate d. Note that we omit the
list of votes if it is clear from the context. A voting rule
r : {(C, V ) | (C, V ) is an election} → 2C determines the
set of winners of an election (C, V ). We focus on Schulze
and ranked pairs. Both are Condorcet voting systems, mean-
ing they always choose the candidate as the winner who wins
in the pairwise comparison against any other candidate, if
there is one. Such a candidate is called a Condorcet winner.

Schulze: For an election (C, V ), we first construct the
weighted majority graph (WMG). A WMG is a weighted
directed graph G = (V̂ , E,w), where V̂ = C and there
is an edge from candidate c to d with weight DV (c, d) =
NV (c, d) − NV (d, c) if NV (c, d) > NV (d, c). Let the
strength of a path p (str(p)) be the weight of the weakest

edge in the path p. For each pair of candidates c, d ∈ C, let
the strength of the strongest path be P (c, d) = max{str(p) |
p is a path from c to d} if there exists a path from c to d; oth-
erwise, set P (c, d) = −∞. A candidate c ∈ C is a Schulze
winner of (C, V ) if P (c, d) ≥ P (d, c) for each d ∈ C \ {c}.
Example 1. Consider an election (C, V ) with the candidate
set C = {a, b, c, d} and the following votes:

4× v1 : a c b d,

2× v2 : d a c b,

3× v3 : d c a b,

2× v4 : b d a c.

First, we determine NV (x, y) for each pair of candidates
x, y ∈ C to build the WMG:

NV (a, b) = 9, NV (a, c) = 8, NV (a, d) = 4,

NV (b, a) = 2, NV (b, c) = 2, NV (b, d) = 6,

NV (c, a) = 3, NV (c, b) = 9, NV (c, d) = 4,

NV (d, a) = 7, NV (d, b) = 5, NV (d, c) = 7.

The WMG is shown in Figure 1. The strengths of the
strongest paths for each pair of candidates x, y ∈ C are
given in Table 2. Since P (d, x) ≥ P (x, d) for each x ∈
C \ {d} and this does not hold for any other candidate, d is
the unique Schulze winner of the election.

Ranked pairs: For an election (C, V ), we first calculate
DV (c, d) for all pairs of candidates c, d ∈ C, c 6= d, and then
order the pairs from highest to lowest weights, i.e., we order
the values of DV (c, d). We consider each pair of candidates
one by one in the order determined by the weights DV (c, d).
Note that following Parkes and Xia (Parkes and Xia 2012),
we break ties according to a fixed tie-breaking rule. Now, in
each step, we consider the highest ranking pair c, d of the
weight order, which has not yet been considered. We fix the
order c � d as long as the relation c � d does not violate
transitivity (which would contradict the previously fixed or-
der, in which case this pair is disregarded). When all pairs
have been considered, the ranked pairs winner of the elec-
tion (C, V ) (subject to the fixed tie-breaking) is the highest
ranking candidate of the resulting order of candidates.

Since we do not need a complete ranking of the candi-
dates, we use a slightly simplified but equivalent definition
of ranked pairs introduced by Berker et al. (Berker et al.
2022), which only returns the winner of the election and
works by constructing an acyclic graph. After ordering the
positive majorities DV (c, d) in decreasing order, in each
step, we consider the top pair (c, d) of this weight order,
which has not yet been considered. Again, ties are broken
by a fixed tie-breaking method. We add an edge (c, d) to a
directed graph G, unless inserting this edge would create a
cycle, in which case the pair (i.e., the edge) is disregarded.
When all pairs have been considered, the ranked pairs win-
ner of (C, V ) (subject to the fixed tie-breaking) is the candi-
date corresponding to the source of G.
Example 2. Consider the election described in Example 1.
By using lexicographical tie-breaking, we get the weight or-
der shown in Table 3. We now start by considering the first
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Figure 1: Weighted ma-
jority graph in Exam-
ple 1.

Table 2: Strengths of the
strongest paths in Example 1.

P (x, y) a b c d
a – 7 5 1
b 1 – 1 1
c 1 7 – 1
d 3 3 3 –

Table 3: Order of weights in Exam-
ple 2.

pair (ci, cj) DV (ci, cj)
1. (a, b) 7
2. (c, b) 7
3. (a, c) 5
4. (d, a) 3
5. (d, c) 3
6. (b, d) 1

a b

c d

Figure 2: Directed
graph G in Exam-
ple 2.

pair (a, b). The corresponding edge (a, b) can of course be
inserted into the directed graph G. In the next four steps,
one after another we consider the pairs (or, edges) (c, b),
(a, c), (d, a), and (d, c), which can all be added to G since
none of them creates a cycle. Only the last edge (b, d) can-
not be inserted since we would then get a cycle among b, c,
and d. The directed graph G is depicted in Figure 2. Being
the source of the graph, d is the ranked pairs winner of the
election.

We will study various types of electoral control, starting
with constructive control by deleting candidates, which has
been defined by Bartholdi et al. (Bartholdi III, Tovey, and
Trick 1992) for an election system E as follows:

E -CONSTRUCTIVE CONTROL BY DELETING CANDIDATES

Given: An election (C, V ), a distinguished candidate p ∈
C, and ` ∈ N.

Question: Is it possible to make p the unique winner of the E
election resulting from (C, V ) by deleting at most
` candidates?

In the setting of replacing candidates or voters (Loreggia
et al. 2015; Erdélyi et al. 2021), the chair must not alter the
size of the election and instead must add a candidate or voter
for each one she deletes.

E -CONSTRUCTIVE CONTROL BY REPLACING CANDIDATES

Given: An election (C, V ), a set of unregistered candi-
dates D, C ∩ D = ∅, a distinguished candidate
p ∈ C, and ` ∈ N.

Question: Is it possible to make p the unique winner of the E
election resulting from (C, V ) by replacing at most
` candidates C′ ⊆ C with candidates D′ ⊆ D,
where |C′| = |D′|?

E-CONSTRUCTIVE CONTROL BY REPLACING VOTERS
(E-CCRV) is defined analogously by asking whether it is
possible to make a preferred candidate p the unique winner
of the E election resulting from (C, V ) by replacing at most
` votes V ′ ⊆ V with votes U ′ ⊆ U such that |V ′| = |U ′|,
where U is a list of as of yet unregistered votes.

In these control scenarios, a chair’s goal is to make a pre-
ferred candidate the unique winner. A chair may also be in-
terested in preventing a candidate from winning. This set-
ting is known as destructive control (Hemaspaandra, Hema-
spaandra, and Rothe 2007). Instead of asking whether a can-
didate can be made a winner, we ask whether the sole vic-
tory of a candidate can be prevented. We abbreviate control

problems by the first letter of each word, e.g. E-DCDC for
E-DESTRUCTIVE CONTROL BY DELETING CANDIDATES.
Aside from the unique-winner model, which is used for
the given definitions of the above control problems, in the
nonunique-winner model we ask whether a preferred candi-
date can be made a winner (possibly among others) in the
constructive case, and whether a despised candidate can be
prevented from winning altogether in the destructive case.
Note that when interpreting a voting rule as resolute (i.e.,
to always yield exactly one winner due to tie-breaking), the
unique-winner and nonunique-winner models are the same.

In addition to the above control problems, we also study
variations of multimode control (Faliszewski, Hemaspaan-
dra, and Hemaspaandra 2011), where several of the standard
control actions and bribery can be combined into one attack.
For an election system E , the problem is defined as follows:

E -CONSTRUCTIVE CONTROL BY AC+DC+AV+DV+B

Given: Two disjoint sets of candidates, C and D, two dis-
joint lists of votes over C ∪ D, V and U , a dis-
tinguished candidate p ∈ C, and `AC , `DC , `AV ,
`DV , `B ∈ N.

Question: Is it possible to find two sets, C′ ⊆ C \ {p} and
D′ ⊆ D, and two sublists of votes, V ′ ⊆ V and
U ′ ⊆ U , such that p is the unique winner of the E
election that results from ((C\C′)∪D′, (V \V ′)∪
U ′) by changing (i.e., bribing) at most `B votes in
(V \ V ′) ∪ U ′), and |D′| ≤ `AC , |C′| ≤ `DC ,
|U ′| ≤ `AV , and |V ′| ≤ `DV ?

We abbreviate multimode control problems in the obvious
way; e.g., we use the shorthand E-CCAC+DC+AV+DV+B
for the above problem. Faliszewski et al. (Faliszewski,
Hemaspaandra, and Hemaspaandra 2011) define a method to
classify all 25− 1 variants of multimode control for an elec-
tion system, called classification rule A. Part of this classifi-
cation rule is (Faliszewski, Hemaspaandra, and Hemaspaan-
dra 2011, Theorem 4.7), which states that for any combina-
tion of attack prongs, where the voting rule is resistant to at
least one, it is also resistant to that combination. Using this
and the known results for adding and deleting candidates or
voters and for bribery (see Table 1), it immediately follows
that, except for Schulze-DCAC+DC, Schulze is resistant to
any multimode attack. Since ranked pairs is resistant to all
single-pronged attacks, it is clear that ranked pairs also re-
sists all combinations of multimode control.

In the exact setting, E-EXACT CONSTRUCTIVE CON-
TROL BY AC+DC+AV+DV+B, it must hold that |D′| =



`AC , |C ′| = `DC , |U ′| = `AV , |V ′| = `DV , and ex-
actly `B voters in (V \ V ′) ∪ U ′ were bribed. The destruc-
tive variants are defined analogously by asking whether it
is possible to make p not a (unique) winner, and we again
use the obvious shorthands. Sometimes, we exclude certain
control/bribery actions from multimode control, consider-
ing, e.g., only candidate control (E-EDCAC+DC) and then
omit the unneeded input parameters U , `AV , `DV , and `B .
Note that we do not allow candidates in D or voters in U to
be deleted.

We say a voting system is immune to a type of control
if it is impossible to change the outcome of an election by
that control type; otherwise, this voting system is suscepti-
ble to that type of control. When we have susceptibility to
some control type, we say this voting system is resistant to
this control type if the corresponding control problem is NP-
hard, and it is vulnerable to it if the corresponding control
problem is solvable in polynomial time.

Constructive Control by Deleting Candidates
We now fix a flaw in the proof of the following result.
Theorem 1. Schulze voting is resistant to constructive con-
trol by deleting candidates, i.e., Schulze-CCDC is NP-
complete in the nonunique-winner model.

Proof. The proof of this result, due to Menton and
Singh (Menton and Singh 2013), shows a clever reduction
from 3SAT, but it is technically flawed. We briefly present
their reduction from the proof of (Menton and Singh 2013,
Thm. 2.2) and give a counterexample.

In the 3-SATISFIABILITY problem (3SAT), we are given
a set X of variables and a set Cl = {Cl1, . . . , Clk} of
clauses over X , each having exactly three literals, and we
ask whether there is a satisfying assignment for ϕ, where ϕ
is the conjunction of all clauses Cli ∈ Cl. Given a 3SAT in-
stance (X,Cl), Menton and Singh (Menton and Singh 2013)
construct a Schulze-CCDC instance ((C, V ′), p, k) as fol-
lows. The set of candidates C contains

• k + 1 clause candidates c1i , . . . , c
k+1
i for each clause

Cli ∈ Cl,
• three literal candidates x1

i , x
2
i , x

3
i for each clause Cli,

where xj
i is the jth literal in clause Cli,

• k+1 negation candidates n1
i,j,m,n, . . . , n

k+1
i,j,m,n for each

pair of literals xj
i , x

n
m, where one is the negation of the

other, and
• the distinguished candidate p and an additional candi-

date a.

Let Ci = {c1i , . . . , c
k+1
i } be the set of all clause candidates

for clause Cli ∈ Cl and let K =
⋃k+1

i=1 Ci be the set of all
clause candidates. Let Li = {x1

i , x
2
i , x

3
i } be the set of literal

candidates for the clause Cli and let L =
⋃k+1

i=1 Li be the set
of all literal candidates. Let Nijmn = {n1

ijmn, . . . , n
k+1
ijmn}

be the set of negation candidates for the literals xj
i , xn

m that
are a negation of each other, and let N be the set of all such
negation candidates. For a positive integer z, we write [z] =
{1, . . . , z} as a shorthand. Menton and Singh (Menton and

Singh 2013) define the following list of votes V ′ (which we
will change later to fix the proof):

# preferences for each

1 W (cji , x
1
i ) i ∈ [k], j ∈ [k + 1]

1 W (x1
i , x

2
i ) i ∈ [k]

1 W (x2
i , x

3
i ) i ∈ [k]

1 W (x3
i , p) i ∈ [k]

1 W (nl
ijmn, p) nl

ijmn ∈ N

1 W (a, xj
i ) xj

i ∈ L

1 W (xj
i , n

l
ijmn) l ∈ [k + 1]; xn

m is the negation of xj
i

1 W (p, a)

The deletion limit is k, the number of clauses. Menton and
Singh (Menton and Singh 2013) argue that p can be made a
Schulze winner by deleting at most k candidates from C if
and only if there exists a truth assignment that makes the
given 3SAT instance true. However, the following example
poses a counterexample to the correctness of their proof.

Example 3. We start with a yes-instance of 3SAT, which
will be mapped to a no-instance of Schulze-CCDC by
their reduction. Let (X,Cl) be our given 3SAT instance,
with X = {x1, x2, x3} and Cl = {(x1 ∨ x2 ∨
¬x3), (¬x1 ∨ x2 ∨ x3)}, i.e., we consider the CNF formula

ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) .

According to the proof of Menton and Singh (Menton
and Singh 2013, Thm. 2.2), we construct an instance
((C, V ′), p, `) of Schulze-CCDC as follows. The deletion
limit is k = 2, the number of clauses |Cl|. The set of candi-
dates, C = K ∪ L ∪N ∪ {p, a}, consists of

• the clause candidates c11, c21, c31, c
1
2, c22, and c32,

• the literal candidates x1
1, x2

1, x3
1, x1

2, x2
2, and x3

2,
• the negation candidates n1

1,1,2,1, n2
1,1,2,1, n3

1,1,2,1,
n1
1,3,2,3, n2

1,3,2,3, and n3
1,3,2,3 (abbreviated by n1

1, n2
1,

n3
1, n1

2, n2
2, and n3

2),
• the distinguished candidate p and the additional candi-

date a.

The preferences are represented by the WMG in Figure 3
using McGarvey’s trick (McGarvey 1953). Each edge in this
graph has a weight of two.

Before control, every clause candidate cji , with 1 ≤ i ≤ 2
and 1 ≤ j ≤ 3, ties the other clause candidates and has a
path to every other candidate while no candidate has a path
to this clause candidate.1 Each remaining candidate, includ-
ing the distinguished candidate p, ties every other candidate
except for the six clause candidates, to whom they lose. Thus
the six clause candidates c11, c21, c31, c12, c22, and c32 are the
Schulze winners of the election. Now we want to delete at
most two candidates to make p a winner of the election. Con-
sider the assignment x1 = TRUE, which satisfies the first
clause, and x2 = TRUE, which satisfies the second clause of

1Note that all paths have a strength of two, as there are no other
edge weights in the weighted majority graph.
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Figure 3: Weighted majority graph corresponding to the
election (C, V ′) constructed from a 3SAT instance in Ex-
ample 3. All edges have a weight of two.

the CNF formula ϕ, i.e., we have a yes-instance of 3SAT.2
To ensure that p is a winner of the election, it is necessary to
destroy each path from a clause candidate to p. Menton and
Singh (Menton and Singh 2013) argue that in order to do so,
it is sufficient to “delete one literal candidate for each clause,
selecting a literal that is satisfied by the satisfying assign-
ment for Cl.” However, if we delete the literal candidates x1

1
and x2

2, there is still a path from the candidates c12, c
2
2, and

c32, traversing x1
2 and ni

1 with 1 ≤ i ≤ 3, to the distinguished
candidate p. Therefore, P (ci2, p) > P (p, ci2) for 1 ≤ i ≤ 3
and thus p is still not a Schulze winner of the election. We
now argue that p cannot be made a Schulze winner of the
election by deleting any other possible choice of k = 2 can-
didates, so we indeed have a no-instance of Schulze-CCDC.
First, there are k+1 = 3 candidates in each group of clause
candidates Ci and negation candidates Nijmn, and since all
of them have the same incoming and outgoing edges in the
WMG, deleting only two of them cannot make p a Schulze
winner of the election. Further, deleting candidate a would
result in p losing to all literal candidates in L. Therefore,
the only way to guarantee p‘s victory is to delete two of
the literal candidates xj

1, x
j
2 for j ∈ [k + 1]. It is easy to

see that at least one literal candidate for each clause must
be deleted to break the paths between all clause candidates
and p. It thus suffices to consider only those pairs of literal
candidates where i = 1 for one and i = 2 for the other. The
following table lists those candidates to whom p loses when
the pair in the corresponding column is deleted, thus pre-
venting p from becoming a Schulze winner of the election:

deleted pair x1
1 x1

1 x1
1 x2

1 x2
1 x2

1 x3
1 x3

1 x3
1

x1
2 x2

2 x3
2 x1

2 x2
2 x3

2 x1
2 x2

2 x3
2

wins against p nj
1 cj2 cj2 cj1 cji cji cj1 cji cji , n

j
2

Note that j ∈ [k + 1] and i ∈ [2]. This shows that a

2The truth assignment of x3 is irrelevant, as both clauses and
thus the formula ϕ are already true due to the truth assignment of
x1 and x2.

ap

c11

c21

c31

c12

c22

c32

x1
1 x2

1 x3
1

x1
2 x2

2 x3
2

n1
1 n2

1 n3
1

n1
2 n2

2 n3
2

Figure 4: WMG corresponding to the election (C, V ) con-
structed from the given 3SAT instance from our counterex-
ample with the new reduction. Dashed edges have a weight
of two and drawn edges have a weight of four.

yes-instance of 3SAT has been mapped to a no-instance of
Schulze-CCDC by the reduction in the proof of Menton and
Singh (Menton and Singh 2013, Thm. 2.2).

Their reduction is quite clever, but unfortunately wrong,
as shown by the counterexample. However, by modifying it
appropriately, we can ensure that p can indeed be made a
Schulze winner of the election by deleting at most k candi-
dates if and only if (X,Cl) is a yes-instance of 3SAT. For
our modifications, it is only necessary to change the list of
votes. The list of votes V over the same candidates C is now
the following:

# preferences for each

2 W (cji , x
1
i ) i ∈ [k], j ∈ [k + 1]

2 W (x1
i , x

2
i ) i ∈ [k]

2 W (x2
i , x

3
i ) i ∈ [k]

2 W (x3
i , p) i ∈ [k]

2 W (a, x) x ∈ L
2 W (p, a)
1 W (n, p) n ∈ N
1 W (a, c) c ∈ K

1 W (xj
i , n

l
ijmn) l ∈ [k + 1]; xn

m is the negation of xj
i

The graph in Figure 4 shows the weighted majority graph
for the 3SAT instance from our counterexample adapted to
the new reduction. We claim that (X,Cl) is a yes-instance
of 3SAT if and only if ((C, V ), p, k) is a yes-instance of
Schulze-CCDC in the nonunique-winner model.

From left to right, let (X,Cl) be a yes-instance of 3SAT.
Since we have a yes-instance of 3SAT, we have a truth
assignment that makes at least one literal in each clause
Cli ∈ Cl true. We claim that p can be made a Schulze win-



ner by deleting one literal candidate corresponding to some
true literal for each clause. The only path with weight four
from a clause candidate cji ∈ K to p is through the literal
candidates: from x1

i via x2
i to x3

i . Since we deleted one literal
candidate for each clause, there no longer exists a weight-4
path from a clause candidate to p and P (p, c) = 2 ≥ P (c, p)
for c ∈ K. For each c ∈ L ∪ {a}, we have P (p, c) = 4 =
P (c, p). Since we deleted only literal candidates where the
corresponding literal was assigned to be true, we never have
the case that we deleted two literal candidates xj

i , xn
m, which

negate each other. Thus we still have a weight-2 path from
p to each negation candidate and P (p, c) = 2 = P (c, p) for
each c ∈ N . It follows that ((C, V ), p, k) is a yes-instance
of Schulze-CCDC in the nonunique-winner model.

From right to left, let (X,Cl) be a no-instance of 3SAT.
Thus, for each assignment of the literals, there exists a clause
which is false. To ensure that p is a winner of the election,
it is necessary that P (p, c) ≥ P (c, p) for each c ∈ C \ {p}.
Since P (p, c) = 2 < 4 = P (c, p) for each c ∈ K, we
have to destroy each path of weight greater than two from
the clause candidates to p, in particular the path through
the literal candidates xj

i ∈ Ci, j ∈ {1, 2, 3}. Due to the
deletion limit k = |Cl|, it is necessary to delete one literal
candidate for each clause. Consider any subset of literals of
size k such that for each clause one literal is contained in the
set. It follows that this set contains at least two literals, xj

i
and xn

m, that negate each other, for otherwise, the formula
would be satisfiable and we would have a yes-instance of
3SAT. By deleting the corresponding two literal candidates,
we no longer have a path from p to their negation candi-
dates n ∈ Nijmn. It follows that P (p, n) < P (n, p) and
it is impossible to make p a Schulze winner of the election
by deleting at most k candidates. Therefore, ((C, V ), p, k)
is a no-instance of Schulze-CCDC in the nonunique-winner
model.

Finally, it is easy to see that Schulze-CCDC is in NP.

Exact Multimode and Control by Replacing
Now we turn to exact multimode control and control by
replacing candidates or voters. Lorregia et al. (Loreggia
et al. 2015) showed that any voting rule that is resistant
to constructive control by deleting candidates and satis-
fies IBC is also resistant to constructive control by replac-
ing candidates.3 We extend their result to also apply to E-
ECCAC+DC and E-ECCRC.

Lemma 1. Let E be a voting rule that satisfies IBC. If E-
CCDC is NP-hard, then so are E-ECCAC+DC and E-
ECCRC.

Proof. We reduce E-CCDC to E-ECCAC+DC and E-
ECCRC. Let (C, V, p, k) be an instance of E-CCDC. De-
fine C ′ = C ∪ X with X = {x1, . . . , xk}, D =

3IBC refers to insensitivity to bottom-ranked candidates (Lang,
Maudet, and Polukarov 2013): A voting rule E is said to be IBC
if, given an election (C, V ) and a new candidate x, the election
(C, V ) and (C ∪ {x}, V x), where V x is the list of votes obtained
by adding x as the least preferred alternative to each vote in V ,
have the same winners under E .

{d1, . . . , d`AC
}, `DC = `RC = k, and set `AC ∈ N arbitrar-

ily. Let V ′ = v X D for every v ∈ V , i.e., add all candidates
from X at the bottom of every vote and then add all can-
didates from D at the bottom of those votes. Construct an
instance (C ′, D, V ′, p, `AC , `DC) of E-ECCAC+DC and
an E-ECCRC instance ((C ′, V ′), p, `RC). Since candidates
from D are bottom-ranked in all votes, they have no influ-
ence on the winner determination. Thus the outcome of the
election can only be changed by the deletion attack. In a
E-CCDC yes-instance, a set of candidates whose removal
guarantees p to win exists, which can be padded by candi-
dates from X to allow for successful exact multimode con-
trol. A E-CCDC no-instance cannot be recovered to allow
for candidate p’s victory in the multimode setting.

Lemma 2. Let E be a voting rule that satisfies IBC. If E-
DCDC is NP-hard, then so are E-EDCAC+DC, E-DCRC,
and E-EDCRC.

Proof. The same construction and proof idea used in the
proof of Lemma 1 works here as well.

Lemma 3. Schulze and ranked pairs are insensitive to
bottom-ranked candidates.

Proof. Let (C, V ) be an election and x a new candidate. Let
(C ∪ {x}, V x) be the election where candidate x is added
to every vote in V as the least preferred option. Clearly, we
have NV x(x, c) = 0 and thus DV x(x, c) = −|V x| for all
c ∈ C \ {x}. For Schulze, it follows that in the WMG can-
didate x has an incoming edge with weight |V x| for every
c ∈ C and the outdegree of x is 0. Thus candidate x cannot
win and can also not be part of any path between any other
candidates c, c′ ∈ C. For ranked pairs, it follows that the pair
(c, x) will be in the top ranking for each c ∈ C . These pairs
will be fixed first and the winner of election (C ∪ {x}, V x)
is the same as of election (C, V ).

We now obtain the following three results.

Corollary 1. Schulze-CCRC and Ranked-Pairs-CCRC are
NP-complete.

Proof. Schulze and ranked pairs are IBC (see Lemma 3),
from Theorem 1 we know that Schulze-CCDC is NP-hard,
and Parkes and Xia (Parkes and Xia 2012) showed NP-
hardness of Ranked-Pairs-CCDC. Hence, by the result of
Lorregia et al. (Loreggia et al. 2015), Schulze-CCRC and
Ranked-Pairs-CCRC are also NP-hard. It is easy to see that
Schulze-CCRC and Ranked-Pairs-CCRC are in NP and
thus, NP-complete.4

Corollary 2. Schulze-ECCAC+DC, Schulze-ECCRC,
Ranked-Pairs-ECCAC+DC, and Ranked-Pairs-ECCRC
are NP-complete.

Proof. By Lemma 1, we can extend the proof of Corollary 1
to Schulze-ECCAC+DC, Schulze-ECCRC, Ranked-Pairs-
ECCAC+DC, and Ranked-Pairs-ECCRC.

4As noted earlier, we use a fixed tie-breaking scheme to ensure
tractability.



Corollary 3. Ranked-Pairs-EDCAC+DC, Ranked-Pairs-
EDCRC, and Ranked-Pairs-DCRC are NP-complete.

Proof. By Lemma 3, ranked pairs is IBC and Parkes
and Xia (Parkes and Xia 2012) showed NP-hardness
for Ranked-Pairs-DCDC. By the result of Lorregia et
al. (Loreggia et al. 2015), Ranked-Pairs-DCRC is also
NP-hard. Since Ranked-Pairs-DCRC is in NP, it is NP-
complete. By Lemma 2, this also applies to Ranked-Pairs-
EDCAC+DC and Ranked-Pairs-ECCRC.

We now show resistance to exact multimode control and
control by replacing voters by adapting the reductions for
Schulze-CCAV (Menton and Singh 2013).

Theorem 2. In both the unique-winner and the nonunique-
winner model, Schulze-ECCAV+DV, Schulze-CCRV,
Schulze-EDCAV+DV, and Schulze-DCRV are NP-
complete.

Proof sketch. To show NP-hardness, we reduce from the
NP-complete problem RESTRICTED EXACT COVER BY
3-SETS (RX3C) (Gonzalez 1985): Given a set B =
{b1, . . . , b3s} with s ≥ 1 and a list S = {S1, . . . , S3s},
where Si = {bi,1, bi,2, bi,3} and Si ⊆ B for all Si ∈ S and
each bj is contained in exactly three sets Si ∈ S , does there
exist an exact cover, i.e., a sublist S ′ ⊆ S such that each
bi ∈ B occurs in exactly one Si ∈ S ′?

Let (B,S) be an RX3C instance, where B =
{b1, . . . , b3s}, S = {S1, . . . , Sn} and for each Si ∈ S we
have Si = {bi,1, bi,2, bi,3}. In addition, each bj is contained
in exactly three sets Si ∈ S, giving us |B| = |S| = 3s. We
present the reduction in the nonunique-winner model; the
reduction can be adapted for the unique-winner model. Let
`AV = `DV = s (`RV = s) for the Schulze-ECCAV+DV
and Schulze-EDCAV+DV (Schulze-CCRV and Schulze-
DCRV) instances we construct. Further, let L � s be a
constant much greater than s. From (B,S) we construct an
election (C, V ) as follows. Let the candidate set be C =
B ∪{p, w}. The list of votes contains `DV votes of the form
wB p and the remaining votes are constructed such that

• p beats w by 2L votes,
• each bi beats p by 2L+ 2`DV + 2`AV − 2 votes,
• w beats each bi by votes� 2L and
• all other pairwise differences are 0 or at least smaller

than L.

The WMG of the resulting election is shown in Fig-
ure 5. Note that candidate w is the unique winner of the
election. The list of additional votes U contains one vote
Si p (B \ Si)w for each Si ∈ S. Let p be the distinguished
candidate for the constructive case and w be the despised
candidate for the destructive case. We claim that p can be
made a Schulze winner (and w can be prevented from being
the unique Schulze winner) by adding exactly `AV voters
and deleting exactly `DV voters if and only if (B,S) is a
yes-instance of RX3C.

By adapting the construction in the proof of Theorem 2,
we obtain the same results for ranked pairs.
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Figure 5: The WMG of the election (C, V ) from the proof
of Theorem 2.

Theorem 3. In both the unique-winner and the nonunique-
winner model, Ranked-Pairs-ECCAV+DV, Ranked-Pairs-
CCRV, Ranked-Pairs-EDCAV+DV, and Ranked-Pairs-
DCRV are NP-complete.

Proof sketch. We only need to adjust the voter list as follows.
Instead of having the pairwise differences between each pair
of candidates bi, bj ∈ B be zero, we have each bi win by
� 2L against all bj ∈ B, where i < j, i.e.,

D(bi, bj)� 2L ∀i < j, 1 ≤ i, j ≤ 3s.

Destructive Control by Deleting Candidates
In this section, we consider destructive control by deleting
candidates. We examine a peculiarity of standard destruc-
tive control by deleting candidates for Schulze elections,
which allows us to reduce the candidates we need to con-
sider for deletion when solving the control problem. Us-
ing this approach, we are able to re-establish the result that
DCDC is polynomial-time solvable for Schulze elections,
which Menton and Singh claimed in an early version (v1)
of their arXiv preprint (Menton and Singh 2012). However,
Menton and Singh removed this result (and the correspond-
ing result for Schulze-DCAC) from all subsequent versions
of the arXiv preprint and from their IJCAI 2013 paper (Men-
ton and Singh 2013), stating these two control problems as
open.

Theorem 4. If destructive control by deleting candidates is
possible for a given Schulze election, then there exists some
candidate c ∈ C who can beat the despised candidate w
by only deleting candidates who directly beat c (i.e., are in-
neighbors of c in the WMG).

Proof. Let c ∈ C be some candidate where P (w, c) ≥
P (c, w), i.e., w has a stronger (or equally strong) path to
c than the other way round. Assume that c can beat w by
deleting the minimal number of candidates needed (with re-
gards to the number necessary for making other candidates
beat w). We claim that either those deleted candidates are
direct neighbors of c, or there exists some other candidate



c∗ ∈ C for which we can reach the same goal by delet-
ing equally many or even fewer candidates in the neighbor-
hood of c∗. First, we define some notation. Let Delcw be the
minimal number of removed candidates needed to make c
beat w. Note that these candidates form a path-preserving
vertex cut5. We say that x is before z if x is closer to w
than z. Let N+(c) be the in-neighborhood of a candidate c,
i.e., N+(c) contains all candidates with a direct edge to c.
Finally, we define Indcw to be the candidates, which belong
to the connected component of c as induced by the ver-
tex cut Delcw. Intuitively, Indcw contains all candidates on
stronger paths from w to c that are broken by deleting candi-
dates and where the cut is before the candidate. Clearly, any
z∗ ∈ Indcw also beats w since first P (z∗, c) ≥ P (c, w) and,
therefore, P (z∗, w) ≥ P (c, w), and secondly, no path from
w to z∗ with strength greater than P (c, w) can exist. It fol-
lows that |Delz

∗

w | ≤ |Delcw|. We distinguish the following
two cases.

Case 1: Indcw = ∅. Since Delcw is a minimal cut, we have
Delcw ⊆ N+(c).

Case 2: Indcw 6= ∅. Let F = {f ∈ Indcw | N+(f) ∩
Delcw 6= ∅} be the set of all candidates in the con-
nected component of c, where we deleted some candi-
dates in the in-neighborhood of c. On the one hand, if
|F | = 1 we have a candidate f ∈ F who also beats w
by deleting Delcw. Since Delcw is minimal, it follows that
Delfw = Delcw, and therefore, for a successful control ac-
tion against w, it suffices to delete from N+(f). On the
other hand, if |F | > 1, then N+(f) ∩Delcw = N+(g) ∩
Delcw for all f, g ∈ F . For a contradiction, assume there
are two candidates f, g ∈ F who do not share the same
in-neighbors in Delcw. Deleting either N+(f)∩Delcw or
N+(g) ∩ Delcw is sufficient to make the respective can-
didate beat w. Since N+(f) ∩Delcw 6= N+(g) ∩Delcw,
we have a contradiction to Delcw being minimal.

This result can be used to design an algorithm for
Schulze-DCDC, which runs in polynomial time. Note that
we will at times refer to candidates who could possibly beat
d as rivals of the despised candidate.

Theorem 5. Schulze-DCDC in the nonunique-winner
model is solvable in polynomial time.

Proof sketch. Consider an election (C, V ) and a correspond-
ing control instance ((C, V ), d, `) of Schulze-DCDC. If the
despised candidate d initially is a Schulze winner of (C, V ),
our goal is to find a candidate c with a stronger path to d than
d has to c by deleting at most ` candidates.

First, if the despised candidate d is already not a Schulze
winner of (C, V ), return true. Otherwise, iterate over the set
of candidates C \ {d}. For each candidate c ∈ C \ {d},
we check whether c is a possible rival of d. If d beats c di-
rectly, i.e., the edge from d to c is stronger than any path
from c to d, we exclude c as a rival and move on to the next
possible candidate. Additionally, if P [c, d] = 0, we also ex-
clude c and move on. Otherwise, c is a possible rival of d

5See Menton and Singh (Menton and Singh 2013) for a defini-
tion of path-preserving vertex cut.

and we move on to the deletion stage and initialize a dele-
tion counter ctr = 0 for this candidate c. Next, for the graph
G of all stronger paths from d to c, i.e., all paths where the
strength of the path is greater than P [c, d], we check whether
deleting the in-neighbors N+

G (c) of c is possible within our
deletion limit and accomplishes our goal of dethrowning d:
We increment the deletion counter by ctr+ = |N+

G (c)| and
check whether ctr > `; if so, we move on to the next pos-
sible candidate; otherwise, we delete N+

G (c) from the orig-
inal election. If d is not a Schulze winner of the election
after deletion, return true. If d still wins, we have cut a path
from c to d by deleting N+

G (c). Repeat the above steps until
either the deletion limit is reached or d is not a winner of
the election anymore. Finally, if there is no candidate such
that deleting at most ` candidates makes this candidate win
against d, return false.

The algorithm runs in polynomial time and correctness
follows from Theorem 4. Note that it is not possible to easily
extend this result to the unique-winner model.

Future Research
We studied electoral control for Schulze and ranked pairs.
After fixing a flaw in the proof of (Menton and Singh
2013, Thm. 2.2) for Schulze-CCDC, we turned to con-
trol by replacing candidates or voters and multimode con-
trol for Schulze and ranked pairs and solved a number
of open problems for them. However, multiple variants
of destructive control of the candidate set such as candi-
date groups (Erdélyi, Hemaspaandra, and Hemaspaandra
2015) as well as destructive control by adding (unique- and
nonunique-winner model) or deleting candidates (unique-
winner model) remain open for Schulze elections. Some-
what surprisingly, to the best of our knowledge, some cases
of control by partition of candidates or voters are yet to be
solved for ranked pairs elections.
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