
Apportionment with Thresholds: Strategic Campaigns Are Easy in the Top-Choice
But Hard in the Second-Chance Mode

Christian Laußmann, Jörg Rothe, Tessa Seeger
Heinrich-Heine-Universität Düsseldorf, MNF, Institut für Informatik

{christian.laussmann, rothe, tessa.seeger}@hhu.de

Abstract

In apportionment elections, a fixed number of seats in a
parliament are distributed to parties according to their vote
counts. Common procedures are divisor sequence methods
like D’Hondt or Sainte-Laguë. In many countries, an elec-
toral threshold is used to prevent very small parties from en-
tering the parliament. Parties with fewer than a given num-
ber of votes are simply removed. We (experimentally) show
that by exploiting this threshold, the effectiveness of strate-
gic campaigns (where an external agent seeks to change the
outcome by bribing voters) can be increased significantly, and
prove that it is computationally easy to determine the required
actions. To resolve this, we propose an alternative second-
chance mode where voters of parties below the threshold re-
ceive a second chance to vote for another party. We establish
complexity results showing that this makes elections more re-
sistant to strategic campaigns.

1 Introduction
In parliamentary elections, votes are cast for parties which in
turn compete for a fixed number of seats in parliament. An
apportionment method is then used to apportion the seats
to the parties according to their vote counts. Usually, such
methods aim at apportioning the seats in a way that makes
the parliament form a small but somehow proportional rep-
resentation of the voters. Such a representative parliament
can then efficiently discuss topics and decide laws in the
name of the voters. In many countries, the basic procedure
is extended by a so-called legal electoral threshold (simply
threshold, for short)—a minimum number of votes a party
must receive to participate in the apportionment process at
all. For instance, in Germany, Poland, and Scotland a party
must receive at least 5% of the total vote count to partici-
pate in the apportionment process. Electoral thresholds are
important for the government to quickly form and allow for
effective decision-making by minimizing the effects of frag-
mentation of the parliament, i.e., by reducing the number of
parties in it (see Pellicer and Wegner (2014) for a study of
how mechanical and psychological effects reduce fragmen-
tation). Undoubtedly, with fewer parties in the parliament
compromises can be made more efficiently.

However, a disadvantage of the threshold is that voters
supporting a party that did not make it above the thresh-
old are not represented in the parliament at all because their

votes are simply ignored. For example, more than 19% of the
votes in the French election of the European Parliament in
2019 were lost due to a threshold of 5%, i.e., “of five votes,
just four become effective, and one is discarded as ineffec-
tive” (Oelbermann and Pukelsheim 2020, p. 30).

Apart from these benefits and drawbacks of thresholds,
we want to find out to what extent they can be exploited
in strategic campaigns. In such scenarios, an external agent
intends to change the election outcome in her favor by brib-
ing voters within a certain budget to change their vote. That
is, an external agent seeks to change a minimum number of
votes in order to either ensure a party she supports receives at
least ` seats in the parliament (constructive case), or to limit
the influence of a party she despises by ensuring it receives
no more than ` seats (destructive case). Today’s possibili-
ties to process enormous amounts of data from social net-
works, search engines, etc., make it possible to predict the
voting behavior of individuals and to target them with indi-
vidualized (political) advertising. Because of this, strategic
campaigns attract increasing attention in political elections.
Given that these attempts are already being used in the real
world, it is critical to understand the threat they pose. To as-
sess these risks, it is essential to know how effective such
campaigns can be and how easy it is to find optimal cam-
paigns. Additionally, if there is a high risk, it is desirable to
improve apportionment procedures to make them more re-
sistant to such campaigns.

Related Work. The research line on bribery, a.k.a. strate-
gic campaigns, was initiated by Faliszewski, Hemaspaandra,
and Hemaspaandra (2009). For more background, we refer
to the book chapters by Faliszewski and Rothe (2016) and
Baumeister and Rothe (2015).

Bribery is linked to electoral voter control where voters
are added to or deleted from voting registers by the election
chair (see Bartholdi III, Tovey, and Trick (1992); Hemas-
paandra, Hemaspaandra, and Rothe (2007)). Bribery and
control have been studied for a wide range of voting rules, as
surveyed by Faliszewski and Rothe (2016). While they have
mainly been investigated for single-winner and multiwin-
ner voting rules, Bredereck et al. (2020) only recently ini-
tiated the study of bribery in apportionment elections. They
show that an optimal strategic campaign for apportionment
elections without a threshold can be computed in polyno-

mial time. Their study is most closely related to our work.
For the more general study of apportionment methods in
mathematical and political context, we refer to the works by
Pukelsheim (2017) and Balinski and Young (1975, 1982).

Our Contribution. Our first contribution is incremental
to the work of Bredereck et al. (2020): We adapt their algo-
rithm to run for apportionment elections with thresholds, and
to use binary search techniques for significantly accelerating
the computation. Both improvements are important for the
practical usability of the algorithms since most real-world
(parliamentary) apportionment elections include a thresh-
old, and the vote count is often in the order of 10 million,
so algorithmic efficiency is highly important. By testing the
improved algorithm on real-world elections we observe that
the campaigns can exploit the electoral threshold and signif-
icantly benefit from it. Further, we introduce the destructive
variant of strategic campaigns.

Our second and completely novel contribution is a sim-
ple extension of the usual apportionment procedure with
electoral threshold: Voters who supported a party below the
threshold can reuse their vote for one of the remaining par-
ties above the threshold. These voters thus get a second
chance. We provide complexity results showing that this
modification makes optimizing the corresponding strategic
campaigns intractable, thus protecting the election.

2 Preliminaries
We begin by introducing the following two notations.
Throughout this paper, we denote the set P \ {X} by P−X ,
and we write [x] as a shorthand for {1, . . . , x}.

We now turn to the apportionment setting. There already
exist simpler definitions of apportionment instances in the
literature, but to treat the electoral threshold and the exten-
sion which we will propose in Section 5 conveniently, we
propose the following definition that is close to the clas-
sical ones from single-winner and multiwinner voting and
works in a two-stage process. An apportionment instance
I = (P,V, τ, κ) consists of the set of m parties P , a list
of n votes V over the parties in P , a threshold τ ∈ N =
{0, 1, 2, . . .}, and the seat count κ ∈ N. Each vote in V is a
strict ranking of the parties from most to least preferred, and
we write A �v B if voter v prefers party A to B (where we
omit the subscript v when it is clear from the context). We
sometimes refer to the most preferred party of a voter v as
v’s top choice. We make the very natural assumption that we
have more votes than we have both parties and seats. Note
that in reality an electoral threshold is usually given as a rela-
tive threshold in percent (e.g., a 5% threshold). However, we
can easily convert such a relative threshold into an absolute
threshold, as required by our definition.1

An apportionment instance will be processed in two steps:
First, we compute a support allocation σ, then we compute
a seat allocation α. The support allocation σ : P → N de-
scribes how many voters support each party. Depending on

1Note that in strategic campaigns, as we define them, the total
number of voters never changes but only which party they vote for.
Thus the threshold is also constant.

this support, the parties later receive a corresponding num-
ber of seats in the parliament. In classical apportionment set-
tings (which we consider in Sections 3 and 4), the support
for each party is simply the number of top choices the party
receives if the party receives at least τ top choices, other-
wise, the support is 0. That is, votes for parties that receive
less than τ top choices are ignored, and the voters have no
opportunity to change their vote. We refer to this as the top-
choice mode.2 An alternative mode will be proposed in Sec-
tion 5.
Example 1 (Support Allocation). Consider τ = 10, P =
{A,B,C,D}, and

V = (8× A � B � C � D, 12×B � A � C � D,
5× B � D � C � A, 25× C � A � D � B,

10× D � B � A � C).

In the top-choice mode, we obtain σ(A) = 0, σ(B) = 17,
σ(C) = 25, and σ(D) = 10.

Given a support allocation, we can now determine the
seat allocation by employing an apportionment method. As
input, such a method takes the support allocation σ and
the seat count κ, and computes the seat allocation α :
P → {0, . . . , κ} satisfying

∑
A∈P α(A) = κ. Note that

the threshold does not matter for apportionment methods
because it was already applied in the computation of the
support allocation. In this study, we focus on the class
of divisor sequence apportionment methods including, for
example, the D’Hondt method (also known as the Jeffer-
son’s method), and the Sainte-Laguë method (also known
as the Webster method). A divisor sequence method is de-
fined by a sequence d = (d1, d2, . . . , dκ) ∈ Rκ with
di < dj for all i, j ∈ {1, . . . , κ} with i < j, and d1 ≥
1. For each party P ∈ P , we compute the fraction list[
σ(P)
d1

, σ(P)
d2

, . . . , σ(P)
dκ

]
. Then we go through the fraction

lists of all parties to find the highest κ values (where ties
are broken by some tie-breaking mechanism). Each party
receives one seat for each of its list values that is among
the κ highest values. D’Hondt is defined by the sequence
(1, 2, 3, . . .) and Sainte Laguë is defined by (1, 3, 5, . . .).
Example 2 (D’Hondt). Suppose we allocate κ = 6 seats
to the parties, party 1 has support 1104, party 2 has 363,
party 3 has 355, and party 4 has 178. Then, the resulting
D’Hondt fraction lists are:

party 1 : [1104, 552, 368, 276, 220.8, 184],
party 2 : [363, 181.5, 121, 90.8, 72.6, 60.5],
party 3 : [355, 177.5, 118.3, 88.8, 71, 59.2],
party 4 : [178, 89, 59.3, 44.5, 35.6, 29.7].

The κ = 6 highest values are highlighted in boldface.
Party 1 thus receives four seats, parties 2 and 3 receive one
seat each, and party 4 receives no seats at all.

Note that it is possible that a party does not receive
any seats in parliament when an allocation procedure such

2Note that in the top-choice mode it would be sufficient to know
the top choice of each voter. However, we need the full preference
later in the second-chance mode. So for convenience, we assume
complete rankings for both modes.

as D’Hondt or Sainte-Laguë is applied, even if it receives
enough votes to exceed the threshold, i.e., we only have the
implication stating that if a party does not get enough votes
to pass the threshold, it will not get any seats. However, the
reverse implication does not apply. This can also be seen in
the previous example, where party 4 has support greater than
zero, i.e., exceeds the threshold, but it does not receive any
seats when D’Hondt is applied.

Now we define strategic campaigns, modeled as a bribery
scenario. We are given an apportionment instance, a bud-
get K, and a number ` indicating the minimum number of
seats we want to achieve for a distinguished party P ∗. By
bribing at most K voters to change their vote in our favor
(i.e., we can alter their votes as we like), we seek to ensure
that party P ∗ receives at least ` seats. To study whether find-
ing successful campaigns (and checking whether there ex-
ist any at all) is tractable, we define the following decision
problem (see Bredereck et al. (2020); Faliszewski, Hemas-
paandra, and Hemaspaandra (2009)).

R-THRESHOLD-APPORTIONMENT-BRIBERY

Given: An apportionment instance (P,V, τ, κ), a
distinguished party P ∗ ∈ P , and inte-
gers `, 1 ≤ ` ≤ κ, and K, 0 ≤ K ≤ |V|.

Question: Is there a successful campaign, that is, is
it possible to make P ∗ receive at least `
seats using apportionment method R by
changing at most K votes in V?

Note that since |V| ≥ κ ≥ ` and |V| ≥ K
the encoding of κ, `, and K does not matter for
the complexity analysis. R-DESTRUCTIVE-THRESHOLD-
APPORTIONMENT-BRIBERY is defined analogously. This
time, however, we ask whether it is possible that by chang-
ing at most K votes P ∗ receives at most ` seats, i.e., we
want to limit the parliamentary influence of our target party.
In both the constructive and the destructive cases, we assume
tie-breaking to be to the advantage of P ∗. That is, if P ∗ and
another party P have the same value in their lists and only
one seat is left for them, P ∗ will receive it.

3 Classical Top-Choice Mode
We start by analyzing the complexity of the two problems
just defined in the classical top-choice mode of apportion-
ment. We will see that for all divisor sequence methods both
deciding whether a successful campaign exists and, if so,
computing such a campaign can be done in polynomial time,
in both the constructive and the destructive case.

Theorem 1. Let R be a divisor sequence method. Then R-
THRESHOLD-APPORTIONMENT-BRIBERY and its destruc-
tive variant are in P.

The proof of Theorem 1 is presented in the remainder
of this section and relies on the lemmas we will present
now. Algorithm 1 for R-THRESHOLD-APPORTIONMENT-
BRIBERY is given explicitly; we later describe how to adapt
it for the destructive case. Note that both algorithms can also
easily be adapted to compute an actual campaign (if one ex-

ists). The following lemma is crucial for the correctness of
the algorithms.

Lemma 1. The following two statements hold for all divisor
sequence methods.

1. The maximum number of additional seats for party P ∗
by bribing at most K votes can always be achieved by
convincing exactlyK voters from parties inP−P∗ to vote
for P ∗ instead.

2. The maximum number of seats we can remove from party
P ∗ by bribing at mostK votes can always be achieved by
convincing exactly K voters from P ∗ to vote for parties
in P−P∗ instead.

Proof. Note that when a party receives additional support,
the parties fraction list values increase, while they decrease
when the support is decreased.

We begin with the first claim. Let’s assume we found a
way to convice voters to change their vote (in the following
called a bribery action) such that P ∗ receives X additional
seats. Case 1: There are parties other than P ∗ which receive
additional votes. Let Pi 6= P ∗ be such a party. Now consider
that we move all votes that were moved to Pi to P ∗ instead.
Clearly, P ∗’s fraction list values increase, while those of Pi
decrease. Thus P ∗ receives at least as many seats in this
modified bribery action as in the original. Case 2: Votes are
only moved from parties in P−P∗ to P ∗. By moving (some)
voters to party Pi instead of to P ∗, the fraction list values
of P ∗ would decrease, while those of Pi would increase.
Therefore, P ∗ cannot receive more seats in this alternative
bribery action compared to the original one. Finally, note
that by the monotonicity of divisor sequence methods, mov-
ing more voters to P ∗ never makes P ∗ lose any seats. Thus
we can spend the whole budget K on moving voters to P ∗.
This together with the two given cases implies that the best
possible number of additional seats can always be achieved
by moving K voters only from P−P∗ to P ∗ (although there
might be other solutions which are equally good).

To prove the second claim, just swap the roles of P ∗ and
the other parties.

Lemma 1 is crucial for the correctness of the algorithms
because it implies that we should exhaust the whole bud-
get K for moving voters from other parties to P ∗ in the
constructive case, and for moving voters from P ∗ to other
parties in the destructive case. That is, we do not need to
consider moving voters within P−P∗ .

Algorithm 1 decides whether a successful campaign ex-
ists in the constructive case. The algorithm works with every
divisor sequence method. We now describe the algorithm in-
tuitively. We first setK to the minimum of n−σ(P ∗) andK
because this is the maximum number of votes we can move
from other parties to P ∗. Should it be impossible for P ∗
with this K to reach the threshold, we can already answer
NO, as P ∗ never receives any seat at all. The crucial part of
the algorithm is computing the γ dictionary: As commented,
γ[P][x] gives the minimum number of votes that must be
removed from party P so that P receives only x seats be-
fore P ∗ receives the `-th seat, assuming P ∗ has exactly K
additional votes in the end. Note that γ can be efficiently

Algorithm 1 Deciding Threshold-Apportionment-Bribery
Input: P , V , τ , κ, P ∗, K, `

1: K ← min{n− σ(P ∗),K}
2: if σ(P ∗) +K < τ then
3: return NO
4: end if
5: compute γ {γ[P][x] is the minimum bribery budget

needed to ensure that P receives exactly x seats before
P ∗ gets ` seats}

6: initialize table tab with κ− ` columns and m rows,
7: where tab[0][0]← 0 and the other entries are∞.
8: let o : {1, . . . , |P−P∗ |} → P−P∗ be an ordering
9:

10: for i← 1 to |P−P∗ | do
11: for s← 0 to κ− ` do
12: for (x, cost) ∈ γ[o(i)] do
13: if s− x ≥ 0 then
14: tmp← tab[i− 1][s− x] + cost
15: if tmp < tab[i][s] then
16: tab[i][s] = tmp
17: end if
18: end if
19: end for
20: end for
21: end for
22:
23: for s← 0 to κ− ` do
24: if tab[|P−P∗ |][s] ≤ K then
25: return YES
26: end if
27: end for
28: return NO

computed. We describe this in detail later. Note that we now
define an order o over the parties. This can be any order;
we just use it to identify each party with a row in the table
which we now begin to fill. For each i, 1 ≤ i ≤ |P−P∗ |,
and each s, 0 ≤ s ≤ κ − `, the cell tab[i][s] contains the
minimum number of votes needed to be moved away from
parties o(1), . . . , o(i) such that o(1), . . . , o(i) receive s seats
in total before P ∗ is assigned its `-th seat (again, assuming
P ∗ has exactlyK additional votes in the end). This table can
also be efficiently computed with dynamic programming, as
we describe later. Finally, we check if there exists a value of
at most K in the last row of the table. If this holds, we an-
swer YES because there do exist bribes that do not exceedK
and ensure that the other parties leave the `-th seat for P ∗.

Note that by tracing back through the table tab we can
find the individual numbers of voters we need to move from
each party to P ∗ for a successful campaign. This number
does not sum up to K in many cases. If so, we can simply
remove the remaining votes from arbitrary parties (except
P ∗).

Lemma 2. Algorithm 1 decides R-THRESHOLD-
APPORTIONMENT-BRIBERY for every divisor sequence
methodR in polynomial time.

Proof. We first prove that the algorithm indeed runs in poly-
nomial time. For most of the algorithm this is easy to see: We
essentially fill a table with |P| rows and at most κ columns.
Since κ ≤ |V|, the table size is indeed polynomial in the
input size. However, it is yet unclear how γ is computed.
Computing γ works with a binary search for the jumping
points of a function φ. Thereby, φ is defined as the num-
ber of seats a party with y votes receives before P ∗ receives
` seats, assuming P ∗ has exactly K additional votes in the
end. Let q be the final vote count of P ∗ (i.e., with the K
additional votes). Then, for a divisor sequence method with
the sequence d = (d1, d2, . . . , dκ) we have

φ(y) =

0 if y ≤ τ
0 if y ≤ q/d`
max{z ∈ {1, . . . , κ} | y/dz > q/d`} otherwise

.

Finding the jumping points with binary search is in O(κ ·
log(K)).

We now prove the correctness of the algorithm. Starting in
the beginning, setting K to the minimum of n− σ(P ∗) and
K is necessary to ensure that we never move more voters
from parties in P−P∗ than allowed. Setting K higher than
that would result in false positive results. For the remainder
of this proof, we assume all K votes are moved from P−P∗

to P ∗, i.e., P ∗ receivesK additional votes in the end. This is
optimal according to Lemma 1. The first if-statement returns
NO if P ∗ cannot reach the threshold. This answer is correct
since P ∗ can never get any seat as long as it is below the
threshold, i.e., in this case the bribe is unsuccessful.

In the middle part of the algorithm, we fill a table. Recall
that for each i, 1 ≤ i ≤ |P−P∗ |, and each s, 0 ≤ s ≤ κ −
`, the cell tab[i][s] contains the minimum number of votes
needed to be removed from parties o(1), . . . , o(i) such that
o(1), . . . , o(i) receive s seats in total before P ∗ is assigned
its `-th seat. The values are computed dynamically from the
previous row to the next row. This is possible because the
seats that parties o(1), . . . , o(i) receive in total before P ∗ is
assigned its `-th seat are exactly the sum of the number of
seats the parties receive individually beforeP ∗ receives its `-
th seat. Further, since this number can be computed directly
by comparing the divisor list of the party with the divisor
list of P ∗ (i.e., the φ function of each party is independent
of other parties’ support) the required bribery budget is also
exactly the sum of the individual bribes. Thus the values in
the list are indeed computed correctly.

Finally, if in the last row there exists a value of at mostK,
we correctly answer YES, by the following argument. Sup-
pose we have a value of at most K in cell tab[|P−P∗ |][s].
Then there are bribes that do not exceed K and ensure that
the other parties receive at most s seats before P ∗ is assigned
its `-th seat. Since there are a total of κ seats available, and
the other parties get s ≤ κ − ` seats before P ∗ receives the
`-th seat, P ∗ will indeed receive its `-th seat. However, if
all cells of the last row contain a value greater than K, the
given budget is too small to ensure that the other parties re-
ceive at most κ − ` seats before P ∗ receives its `-th seat.
Thus the other parties receive at least κ− `+ 1 seats in this
case, which leaves at most `−1 seats for P ∗, so we correctly
answer NO.

We can easily adapt Algorithm 1 for the destructive case.
This time, we remove min{K,σ(P ∗)} voters from party P ∗
and add them to the other parties. Of course, when P ∗ is
pushed below the threshold, we immediately answer YES.
For the destructive case, φ and γ need to be defined slightly
different. Here, we define φ(y) as the number of seats a party
with y votes receives before P ∗ is assigned its (`+1)-th seat
(what we try to prevent). And γ[P][x] is defined as the min-
imum number of votes we need to add to party P such that
it receives at least x seats before P ∗ is assigned its (` + 1)-
th seat. Again, we fill the table with dynamic programming
but this time, whenever we have filled a row completely, we
check if it is possible for the parties corresponding to all yet
filled rows to receive at least κ− ` seats before P ∗ receives
its (` + 1)-th seat by bribery. That is, we check whether we
filled the last cell in the current row with a value of at mostK
or whether it would be possible to fill a cell beyond the last
table cell in the current row with such a value. In that case
we answer YES, since there are not enough seats left for P ∗
to be assigned its (` + 1)-th seat with this bribery action. If
this was never possible, we answer NO because the best we
could do is to occupy at most κ − ` − 1 seats with parties
in P−P∗ , which still leaves the (` + 1)-th seat for P ∗. This
sketches the proof of the following lemma and completes the
proof of Theorem 1.

Lemma 3. For every divisor sequence method R, R-
DESTRUCTIVE-THRESHOLD-APPORTIONMENT-BRIBERY
can be decided in polynomial time.

Note that since we can decide in polynomial time whether
there exists a successful (constructive or destructive) cam-
paign, we can also find the maximum number of seats we
can guarantee for P ∗ with a budget of K (using a simple
binary search) in polynomial time. We do this in the experi-
ments of the following section to test the effectiveness of the
campaigns on real-world elections.

4 Experiment
As we showed in the previous section, computing success-
ful and even optimal campaigns is computationally tractable.
This indicates that such an attack would be relatively simple
for a campaign manager to execute (at least from a com-
putational standpoint). An immediate question that arises is
whether the campaign is effective enough to be worth to be
executed, i.e., how many seats can we actually gain for P ∗ in
an optimal constructive campaign, and how many seats can
we take away from P ∗ in an optimal destructive campaign?

In our experiment, we use three datasets from recent elec-
tions shown in Table 1. GREECE2023 is the Greek par-
liamentary election 2023 with 300 seats to allocate and a
3% threshold, IKE2022 is the Israel Knesset election 2022
with 120 seats and a threshold of 3.25%, and BUL20233

is the 2023 Bulgarian parliament election with 240 seats
and a 4% threshold. The datasets were taken from the
respective Wikipedia sites,4 with original language data

3Here, we removed votes from the dataset which are labeled
‘none of the above.’

4https://en.wikipedia.org/wiki/May 2023 Greek legislative election,
https://en.wikipedia.org/wiki/2022 Israeli legislative election,

GREECE2023 IKE2022 BUL2023

New Dem. (40.8) Likud (23.4) GERB—SDS (26.5)

Syriza (20.1) Yesh Atid (17.8) PP–DB (24.6)

PASOK (11.5) Relig. Zionism (10.8) Revival (14.2)
Communist (7.2) National Unity (9.1) Rights a. Free. (13.8)
Greek Solution (4.5) Shas (8.3) BSP (8.9)

Victory (2.9) United Torah (5.9) Such a People (4.1)

Freedom (2.9) Yisrael Beiteinu (4.5) Bulgarian Rise (3.1)

MeRA25 (2.6) United Arab List (4.1) The Left! (2.2)
Subversion (0.9) Hadash–Ta’al (3.8) Neutr. Bulgaria (0.4)

National Creat. (0.8) Labor (3.7) Together (0.4)

Table 1: The ten largest parties’ percentage share
in datasets GREECE2023 (Greek parliamentary elec-
tion 2023), IKE2022 (Israel Knesset election 2022), and
BUL2023 (Bulgarian parliament election 2023).

available at https://votes25.bechirot.gov.il/nationalresults, https://
ekloges.ypes.gr/current/v/home/parties/, and https://results.cik.bg/
ns2023/rezultati/index.html.

We conducted our experiments as follows. In all three
elections, we focus on a budgetK equal to 0.25% of the total
vote count. This is a relatively small fraction of the voters,
and we find it plausible that a campaign manager could be
able to influence that many voters. To show the effect of the
threshold on the effectiveness of a campaign, we gradually
raise the threshold in our experiment. As the distinguished
party P ∗ we always choose the party with the highest voter
support in the election, since it reaches all tested thresholds
and is thus always present in the parliament. Lastly, we use
D’Hondt in our experiments as a representative of the divisor
sequence methods, since it is one of the most widely used in
apportionment elections. We also conducted the same exper-
iments with Sainte-Lagueë with similar results.

Figure 1 illustrates the effectiveness of both the construc-
tive (top row) and destructive (bottom row) campaigns run
on the three real-world elections. One would expect some
kind of proportionality, e.g., that 0.25% of the voters control
approximately 0.25% of the seats. This is indeed what we
observe for many values of the threshold. However, there
are some spikes where with only 0.25% of voters one can
make P ∗ gain sometimes 5% or even 10% of all seats on
top in the constructive case. This is considerably more that
one can expect from our small budget. Note that the spikes
always occur at thresholds where a party is directly above
the threshold. For instance, in BUL2023 we see a peak at
thresholds 2.0%, 2.9%, 3.9%, and 8.7%, which are exactly
the values where The Left!, Bulgarian Rise, Such a People,
and BSP are slightly above the threshold (see Table 1). This
indicates that at these thresholds the campaign is focused on
pushing a party below the threshold and free up its seats.
For the destructive case, we can see similar peaks as in the
constructive campaigns. However, this time the peaks are at
thresholds where a party is just below the threshold. That is,
the campaign is focused on raising a party above the thresh-
old to steal seats from P ∗.

Note that we also ran the experiments for other values for

https://en.wikipedia.org/wiki/2023 Bulgarian parliamentary election.

0 5 10
0

10

20

30

0 5 10

0

5

10

15

0 5 10

0

5

0 5 10
0

10

20

30

GREECE2023
0 5 10

0

5

10

15

IKE2022
0 5 10

0

2

4

6

8

BUL2023

Figure 1: The x-axis shows a variety of thresholds in
percent of the number of voters n. The y-axis shows
the maximally achievable number of additional seats
(prevented seats) for the strongest party by D’HONDT-
THRESHOLD-APPORTIONMENT-BRIBERY in the top
row and by D’HONDT-DESTRUCTIVE-THRESHOLD-
APPORTIONMENT-BRIBERY in the bottom row, each with
a given budget of K = 0.0025 · n.

the bribe budget K and observed the following: For smaller
budgets, we see narrower (and sometimes lower) peaks right
at the thresholds where a party is just above it (respectively,
just below it, in the destructive case), while for larger bud-
gets, the peaks become wider (and sometimes also higher).
Figure 2a shows the results for 0.15% and Figure 2b for
0.35%. Figures 3a and 3b also illustrate the effects when
we choose the second- or third-strongest party instead of the
strongest as our distinguished party P ∗. Again, the results
are similar. Only with the third-strongest party do we see a
large spike when it is just below (or just above, in the de-
structive case) the threshold, which, however, is in line with
what one would expect.

5 The Second-Chance Mode
From the previous section we know that it is quite problem-
atic if optimal campaigns are easy to compute, because it
makes it very simple for a campaign manager to exert an
enormous influence on the election outcome. Therefore, it
would be of great advantage if there was a modification to
the usual apportionment setting that makes the computation
of optimal campaigns intractable. As mentioned in the intro-
duction, another general problem of apportionment elections
with thresholds is that voters for parties below the threshold
are completely ignored. As a result, the parliament tends to
be less representative. We now introduce the second-chance
mode of voting in apportionment elections which will help
resolve both of these problems at once. Unlike in the top-
choice mode, in the second-chance mode voters for parties
below the threshold get a second chance to vote. That is,
we first determine the parties P̂τ that have at least τ top
choices, i.e., the parties that make it above the threshold.

Each voter now counts as a supporter for their most preferred
party in P̂τ . The second-chance voting process is reminis-
cent of the single transferable vote (STV) rule. However, it
differs as STV is a single- or multiwinner voting rule and is
not used for computing support allocations.

Note that similar voting systems are already being used
in Australia e.g. for the House of Representative and Sen-
ate. In those elections, voters rank the candidates or parties
from most to least preferred and votes for excluded choices
are transferred according to the given ranking until the vote
counts. In Section 3, we showed that in the classical appor-
tionment setting, bribery can be solved efficiently for each
divisor sequence method. To show that these problems are
NP-hard in the second-chance mode, we provide reductions
from the NP-complete HITTING SET problem (Karp 1972).

HITTING SET

Given: A set U = {u1, . . . , up}, a collection S =
{S1, . . . , Sq} of nonempty subsets of U ,
and an integer K, 1 ≤ K ≤ min{p, q}.

Question: Is there a set U ′ ⊆ U , |U ′| ≤ K such that
U ′ ∩ Si 6= ∅ for each Si ∈ S?

Instead of just focusing on specific apportionment meth-
ods, in the following we generalize our results to a whole
class of apportionment methods. We call an apportionment
method majority-consistent if no party in P with less sup-
port than A receives more seats than A, where A ∈ P is a
party with the highest support. Undoubtedly, this is a crite-
rion every reasonable apportionment method should satisfy.
Note that all divisor sequence methods and also the com-
mon Largest-Remainder-Method (LRM) (see, e.g., Bred-
ereck et al. (2020)) are majority-consistent. We now show
that the second-chance mode of apportionment voting makes
computing an optimal strategic campaign computationally
intractable, and can prevent attempts of running them.

Theorem 2. For each majority-consistent apportionment
method R, R-THRESHOLD-APPORTIONMENT-BRIBERY
and R-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-
BRIBERY are NP-hard in the second-chance mode. They
are NP-complete ifR is polynomial-time computable.

Proof. Membership of both problems in NP is obvious
whenever R is polynomial-time computable. We show NP-
hardness of R-THRESHOLD-APPORTIONMENT-BRIBERY
by a reduction from HITTING SET. Let (U, S,K) =
({u1, . . . , up}, {S1, . . . , Sq},K) be an instance of HIT-
TING SET with q ≥ 4. In polynomial time, we construct
an instance ofR-THRESHOLD-APPORTIONMENT-BRIBERY
with parties P = {c, c′} ∪U , a threshold τ = 2q + 1, ` = 1
desired seat, κ = 1 available seat, and the votes

V = (4q + 2 votes c � · · · ,
4q +K + 2 votes c′ � · · · , (1)

for each j ∈ [q], 2 votes Sj � c′ � · · · , (2)
for each i ∈ [p], q − γi votes ui � c � · · · , (3)
for each i ∈ [p], q − γi votes ui � c′ � · · ·), (4)

0 5 10

0

10

20

30

0 5 10

0

5

10

15

0 5 10

0

2

4

6

8

0 5 10

0

10

20

30

GREECE2023
0 5 10

0

5

10

15

IKE2022
0 5 10

0

2

4

6

8

BUL2023

(a) Experiment with a budget of K = 0.0015 · n.

0 5 10
0

10

20

30

0 5 10
0

5

10

15

0 5 10

2

4

6

8

0 5 10
0

10

20

30

GREECE2023
0 5 10

0

5

10

15

IKE2022
0 5 10

2

4

6

8

BUL2023

(b) Experiment with a budget of K = 0.0035 · n.

Figure 2: The x-axis shows a variety of thresholds in percent of the number of voters n. The y-axis shows the maximally
achievable number of additional seats (prevented seats) for the strongest party by D’HONDT-THRESHOLD-APPORTIONMENT-
BRIBERY in the top row and by D’HONDT-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-BRIBERY in the bottom row.

where Sj � c′ denotes that each element in Sj is preferred
to c′, but we do not care about the exact order of the elements
in Sj . Further, 2γi is the number of votes from group (2), in
which ui is at the first position. That is, it is guaranteed that
each ui receives exactly 2γi+(q− γi)+ (q− γi) = 2q < τ
top choices, while c has 4q+2 ≥ τ and c′ has 4q+K+2 ≥ τ
top choices. Note that the voters in groups (2) and (4) use
their second chance to vote for c′, and those in group (3) use
it to vote for c. It follows that c′ currently receives exactly
2q + K more votes than c and thus wins the seat. We now
show that we can make the distinguished party P ∗ = c win
the seat by bribing at most K voters if and only if there is a
hitting set of size at most K.

(⇐) Suppose there exists a hitting set U ′ ⊆ U of size
exactly K (if |U ′| < K, it can be padded to size exactly K
by adding arbitrary elements from U). For each ui ∈ U ′,
we bribe one voter from group (1) to put ui at their first
position. These ui now each receive the 2q + 1 top choices
required by the threshold, i.e., they participate in the further
apportionment process. Each ui can receive a support of at
most 4q + 1. Since the support of c is not affected by any
bribes, no ui can win the seat against c. Groups (3) and (4)
do not change the support difference between c and c′ and
thus can be ignored. However, since U ′ is a hitting set, all 2q
voters in group (2) now vote for a party in U ′ instead of c′,
reducing the difference between c and c′ by 2q. Further, we
have bribedK voters from group (1) to not vote for c′, which
reduces the difference between c and c′ by another K votes.
Therefore, c and c′ now have the same support, and since we
assume tie-breaking to prefer c, party c wins the seat.

(⇒) Suppose the smallest hitting set has size K ′ > K.
That is, with only K elements of U we can hit at most
q − 1 sets from S. It follows that by bribing K voters from
group (1) to vote for some ui ∈ U instead of c′, we can
only prevent up to 2(q − 1) voters from group (2) to use
their second chance to vote for c′. Thus we reduce the dif-

ference between c and c′ by at most 2(q − 1) + K, which
is not enough to make c win the seat. Now consider that
we do not use the complete budget K on this strategy, i.e.,
to bribe voters of group (1), but only K ′′ < K. Note that
by bringing only K ′′ parties from U above the threshold,
we can only hit up to 2(q − 1 − (K − K ′′)) sets from S.
So the difference between c and c′ is reduced by at most
2(q − 1 − (K − K ′′)) + K ′′ using this strategy. However,
we now have a budget of K −K ′′ left to bribe voters, e.g.,
from group (2), to vote primarily for c without bringing any
additional ui above the threshold. It is easy to see that we
will only reduce the difference between c and c′ by at most
2(K−K ′′) with this strategy as, in the best case, c gains one
supporter and c′ loses one with a single bribery action. Thus
we cannot reduce the difference between c and c′ by more
than 2(q−1−(K−K ′′))+K ′′+2(K−K ′′) = 2(q−1)+K ′′
with this mixed strategy. For each K ′′ ≤ K, we have
2(q − 1) + K ′′ < 2q + K. Therefore, if there is no hit-
ting set of size at most K, we cannot make the distinguished
party c win against c′.
The proof for the destructive variant works by swapping the
roles of c and c′.

6 Conclusions
We have studied strategic campaigns for apportionment
elections with thresholds and introduced the second-chance
mode of voting, where voters for parties below the thresh-
old get a second chance to vote. The second-chance mode
makes computing strategic campaigns intractable while they
are easy to compute in the classical top-choice mode.

As future work, we propose to study other types of strate-
gic campaigns (e.g., cloning of parties; see (Tideman 1987;
Elkind, Faliszewski, and Slinko 2011; Neveling and Rothe
2020)). We already studied electoral control problems, in
particular constructive and destructive control by adding or
deleting parties or votes. It turns out that both, top-choice

0 5 10
0

5

10

15

0 5 10

0

5

10

0 5 10

0

5

0 5 10
0

5

10

15

GREECE2023
0 5 10

0

5

10

IKE2022
0 5 10

2

4

6

8

BUL2023

(a) Experiment with the second-best party.

0 5 10

0

20

40

0 5 10

0

10

20

0 5 10

0

2

4

0 5 10

0

20

40

GREECE2023
0 5 10

0

10

20

IKE2022
0 5 10

2

4

BUL2023

(b) Experiment with the third-strongest party.

Figure 3: The x-axis shows a variety of thresholds in percent of the number of voters n. The y-axis shows the maximally
achievable number of additional seats (prevented seats) by D’HONDT-THRESHOLD-APPORTIONMENT-BRIBERY in the top
row and D’HONDT-DESTRUCTIVE-THRESHOLD-APPORTIONMENT-BRIBERY in the bottom row, each with a given budget of
K = 0.0025 · n.

and second-chance mode are resistant to all four party con-
trol problems. For the proofs, it suffices to adapt the proofs
of Bartholdi et al. (Bartholdi III, Tovey, and Trick 1992)
and Hemaspaandra et al. (Hemaspaandra, Hemaspaandra,
and Rothe 2007) showing that plurality voting is resistant
to the corresponding control problems. For vote control in
the top-choice mode, Algorithm 1 can be adapted showing
that all four cases of vote control are in P for divisor se-
quence methods. However, this only works when the thresh-
old is fixed, i.e., not given as percent of n. Regarding the
second-chance mode, we have so far been able to show that
all majority-consistent apportionment methods are resistant
to vote control if the threshold is fixed. Another direction
for future research is to study the complexity of these prob-
lems in restricted domains such as (nearly) single-peaked
preferences (Faliszewski, Hemaspaandra, and Hemaspaan-
dra 2011; Faliszewski et al. 2011). Also, studying the effec-
tiveness of strategic campaigns in the second-chance mode
using ILPs or approximation algorithms is an interesting di-
rection for the future.

To make our strategic campaigns even more realistic, we
propose to study more sophisticated cost functions such
as distance bribery (Baumeister, Hogrebe, and Rey 2019)
where the cost of bribing a voter depends on how much we
change the vote. We conjecture the problem to be harder un-
der the assumption of distance bribery because of the ob-
servation that Lemma 1 no longer holds. That is, there are
cases where it is more effective to move votes within P−P∗

than to move them to P ∗. To illustrate this, suppose we have
two seats, σ(P ∗) = 7, σ(PA) = 4, and σ(PB) = 2 with
τ < 2. According to D’Hondt, P ∗ and PA each receive one
seat. Say K = 1 but the cost for changing a vote from PA to
P ∗ is 2, and the cost for changing a vote from PB to P ∗ is
even higher. We thus cannot move a single voter to P ∗, i.e.,
we cannot gain any seats for P ∗ by this strategy. However,

if the cost for moving a voter from PA to PB is 1, we gain
one seat for P ∗ by moving a voter from PA to PB .

While NP-hardness is desirable in the context of strategic
campaigns, in the context of, e.g., margin of victory or ro-
bustness, the interpretations can be flipped, which can also
be studied as future work. Finally, we suggest studying the
extent to which voters’ satisfaction with the parliament in-
creases when the second-chance mode is used.

Acknowledgements This work was supported in part by
DFG grant RO-1202/21-1. We thank Niclas Boehmer,
Robert Bredereck, and Martin Bullinger for their helpful
comments during a seminar at Schloss Dagstuhl.

References
Balinski, M.; and Young, H. 1975. The Quota Method
of Apportionment. The American Mathematical Monthly,
82(7): 701–730.

Balinski, M.; and Young, H. 1982. Fair Representation:
Meeting the Ideal of One Man, One Vote. New Haven: Yale
University Press.

Bartholdi III, J.; Tovey, C.; and Trick, M. 1992. How Hard
Is It to Control an Election? Mathematical and Computer
Modelling, 16(8/9): 27–40.

Baumeister, D.; Hogrebe, T.; and Rey, L. 2019. Generalized
Distance Bribery. In Proceedings of the 33rd AAAI Confer-
ence on Artificial Intelligence, 1764–1771. AAAI Press.

Baumeister, D.; and Rothe, J. 2015. Preference Aggrega-
tion by Voting. In Rothe, J., ed., Economics and Compu-
tation. An Introduction to Algorithmic Game Theory, Com-
putational Social Choice, and Fair Division, Springer Texts
in Business and Economics, chapter 4, 197–325. Springer-
Verlag.

Bredereck, R.; Faliszewski, P.; Furdyna, M.; Kaczmarczyk,
A.; and Lackner, M. 2020. Strategic Campaign Management
in Apportionment Elections. In Proceedings of the 29th In-
ternational Joint Conference on Artificial Intelligence, 103–
109. ijcai.org.
Elkind, E.; Faliszewski, P.; and Slinko, A. 2011. Cloning in
Elections: Finding the Possible Winners. Journal of Artifi-
cial Intelligence Research, 42: 529–573.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2009. How Hard Is Bribery in Elections? Journal of Artifi-
cial Intelligence Research, 35: 485–532.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2011. The Complexity of Manipulative Attacks in Nearly
Single-Peaked Electorates. In Proceedings of the 13th Con-
ference on Theoretical Aspects of Rationality and Knowl-
edge, 228–237. ACM Press.
Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L.; and
Rothe, J. 2011. The Shield that Never Was: Societies with
Single-Peaked Preferences are More Open to Manipulation
and Control. Information and Computation, 209(2): 89–107.
Faliszewski, P.; and Rothe, J. 2016. Control and Bribery in
Voting. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.;
and Procaccia, A., eds., Handbook of Computational Social
Choice, chapter 7, 146–168. Cambridge University Press.
Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 2007.
Anyone But Him: The Complexity of Precluding an Alter-
native. Artificial Intelligence, 171(5–6): 255–285.
Karp, R. 1972. Reducibility among Combinatorial Prob-
lems. In Miller, R.; and Thatcher, J., eds., Complexity of
Computer Computations, 85–103. Plenum Press.
Neveling, M.; and Rothe, J. 2020. The Complexity of
Cloning Candidates in Multiwinner Elections. In Proceed-
ings of the 19th International Conference on Autonomous
Agents and Multiagent Systems, 922–930. IFAAMAS.
Oelbermann, K.-F.; and Pukelsheim, F. 2020. The European
Elections of May 2019: Electoral Systems and Outcomes.
Study for the European Parliamentary Research Service.
Pellicer, M.; and Wegner, E. 2014. The mechanical and psy-
chological effects of legal thresholds. Electoral Studies, 33:
258–266.
Pukelsheim, F. 2017. Proportional Representation.
Springer.
Tideman, N. 1987. Independence of Clones as a Criterion
for Voting Rules. Social Choice and Welfare, 4(3): 185–206.

