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Abstract

In this paper, we study a variety of NP-hard opti-
mization problems, such as MAXCUT, MAXkSAT, and
MAXNAE2SAT from the perspective of obtaining ex-
act solutions. We derive differentiable functions for each
of these problems using the dataless neural networks
framework. Recently, it was shown that a single differen-
tiable function on a dataless neural network can capture
the Maximum Independent Set problem. Inspired by this
design, we design dataless neural networks for a host of
combinatorial optimization problems. We also establish
the correctness of our derivations in a rigorous fashion.

1 Introduction
NP-hard optimization problems have applications
in almost every domain, such as scheduling, rout-
ing, telecommunications, planning, transportation, and
decision-making processes (Bengio, Lodi, and Prou-
vost 2021; Festa 2014). These problems do not admit
a polynomial-time efficient solution unless some well-
established complexity-theoretic conjectures fail. While
it is challenging to solve such problems optimally, sev-
eral techniques can approximate (Vazirani 2002) opti-
mal solutions or even solve the problems efficiently in
non-trivial exponential time (Fomin and Kratsch 2010).
One method to handle these problems is by using neu-
ral network (NN) frameworks. However, this method re-
quires extensive training of neural networks to generate
the required solution. To overcome these problems, re-
cently, an efficient method was developed using dataless
neural network (dNN) frameworks (Alkhouri, Atia, and
Velasquez 2022). Unlike NN frameworks, dNN frame-
works do not require any data other than input instances.
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Let f be a conventional neural network parameter-
ized by trainable parameters θ. Furthermore, assume
that θ can be trained on some dataset {(xi, yi)}. Let xi
be an instance of a differentiable NP-hard optimization
problem χ, and yi be the values of the optimal solu-
tion of χ. To make the output f(xi; θ) of f as close
to yi as possible, the parameters θ are typically up-
dated using backpropagation by minimizing a differ-
entiable loss function L(xi, f(xi; θ)). The parameters
are updated by the backpropagation in the direction of
θ := θ − α · ∂L(xi, f(xi; θ))/∂θ. Here, α controls the
learning rate. The dataless neural networks are based on
the concept that there is no data for training the neural
network. So, what we have as an output of the neural
network is simply f(en; θ) = f(θ), where en is the
all-ones vector representing a trivial input to the neural
network. Thus, instead of finding patterns in some data
set, dataless neural networks attempt to find the optimal
solution to a given discrete optimization problem by en-
forcing a certain structure on f and θ.

The rest of this paper is organized as follows: In Sec-
tion 2, we formally define the problems and the nota-
tions used in the paper. Section 3 describes related work
in the literature. In Section 4, we design a dNN for the
MAXCUT problem. Section 5 discusses a dNN for the
MAXkSAT problem. Finally, we design a dNN in Sec-
tion 6 for the MAXNAE2SAT problem.

2 Statement of Problems
In this section, we define the problems and some of the
notations used in this paper.

Definition 1 MAXCUT: Given a graph G = (V,E),
find a set C ⊆ E that partitions the set V into two
subsets S and T such that the number of edges between
S and T is maximized.

Let X = {x1, x2, . . . , xn} denote a collection of n
Boolean variables. A literal is either a variable or the
negation of a variable. A clause C is a disjunction of
literals over the variable set X , for example, C = (x1∨
x2 ∨ x3 ∨ x4). A formula is said to be in Conjunctive



Normal Form (CNF) if it is the conjunction of clauses.
For instance, (x1∨x2)∧(x̄1∨x2∨x̄3)∧(x2∨x̄3∨x̄4) is
a CNF formula with three clauses over the variable set
X = {x1, x2, x3, x4}. A CNF formula is said to be in
kCNF form if each clause consists of exactly k literals.

Definition 2 SAT: Given a CNF formula Φ, does there
exist an assignment that satisfies each clause, i.e., sets
at least one literal to true in each clause?

Definition 3 MAXSAT: Let Φ denote a formula in CNF
with m clauses over n variables, find an assignment for
the variables, which maximizes the number of satisfied
clauses in Φ.

Definition 4 MAXkSAT: Let Φ denote a formula in
kCNF with m clauses over n variables, find an assign-
ment for the variables, which maximizes the number of
satisfied clauses in Φ.

Definition 5 NAESAT: Given a CNF formula Φ, does
there exist an assignment that nae-satisfies each clause,
i.e., each clause is satisfied and at least one literal from
each clause is set to false?

Note that unit clauses cannot be nae-satisfied. Only
clauses of size at least two can be nae-satisfied.

Definition 6 MAXNAEkSAT: Given a kCNF formula Φ
with m clauses over n variables, find an assignment for
the variables of Φ that maximizes the number of nae-
satisfied clauses in Φ.

In our design of dataless neural networks, we use
a rectified linear (ReLU) activation function. It is a
piecewise linear function that outputs the input di-
rectly if it is positive; otherwise, it outputs zero, i.e.,
σ(x) = max(0, x). For any positive integer n, [n] :=
{1, 2, . . . , n}. Unless mentioned otherwise, | · | repre-
sents the absolute value or modulus.

3 Related work
This section discusses some of the related work avail-
able in the literature for the neural network (NN) and
dataless neural network (dNN). We discuss the avail-
able results for NNs and dNNs with respect to many
combinatorial optimization problems (COPs). The most
interesting COPs are NP-hard. It is well-known that
such problems do not have polynomial time-efficient al-
gorithms unless some established complexity-theoretic
conjectures fail. Despite being inefficient, these prob-
lems have real-time applications in almost every do-
main, such as routing, scheduling, planning, telecom-
munications, transportation, and decision-making pro-
cesses (Bengio, Lodi, and Prouvost 2021; Festa 2014).
Due to the importance of these problems, a lot of re-
search is going on to address them with different effi-
cient, approximate solvers (Lamm et al. 2016). Broadly,
these solvers are categorized into heuristic algorithms
(Akiba and Iwata 2016), approximation algorithms

(Boppana and Halldórsson 1992), and conventional
branch-and-bound methods (San Segundo, Rodrı́guez-
Losada, and Jiménez 2011). Such approaches may pro-
duce suboptimal solutions. Some of the other well-
studied approaches to dealing with NP-hard prob-
lems use parameterized (Cygan et al. 2015; Flum and
Grohe 2006; Niedermeier 2006) and exact exponen-
tial algorithmic techniques (Fomin and Kratsch 2010;
Gaspers 2010).

However, another approach to address the COPs is to
use the concept of machine learning (Bengio, Lodi, and
Prouvost 2021; Wilder, Dilkina, and Tambe 2019). The
use of reinforcement learning to automate the search
of the heuristics for COPs is discussed in (Drori et al.
2020; Mazyavkina et al. 2021). These models require
training based on the problems. More specifically, they
rely on supervised learning using datasets of the com-
binatorial structures of interest drawn from some distri-
bution of problem instances. In (Alkhouri, Atia, and Ve-
lasquez 2022), the authors introduced dNNs for which
no data is required for training. By designing a single
differentiable function, they captured the well-known
combinatorial optimization problem, the maximum in-
dependent set (MIS) problem. They also designed a
similar dNN structure for the maximum clique (MC)
and minimum vertex cover (MVC) problems related to
the MIS problem. In (Jena, Subramani, and Velasquez
2023), we developed dNNs tailored for solving the max-
imum dissociation set, k-coloring, and maximum cardi-
nality distance matching problems.

The literature discusses several powerful heuristic
solvers for the MIS problem. One of the heuristic
solvers is ReduMIS (Lamm et al. 2016). It consists
of two components. The first component is an itera-
tive implementation of a series of graph reduction tech-
niques. The second component is the use of an evolu-
tionary algorithm. These methods usually involve ex-
tensive training of neural networks (NNs) using large
graph datasets for which solutions are known. Another
method for the MIS problem, similar to the method
of dNN for the MIS problem discussed in (Alkhouri,
Atia, and Velasquez 2022), was developed in (Schuetz,
Brubaker, and Katzgraber 2022). The method discussed
in (Schuetz, Brubaker, and Katzgraber 2022) uses a
graph neural network and does not require training data.
More specifically, its output is represented by the prob-
ability of each node being in the solution. In contrast to
the method discussed in (Alkhouri, Atia, and Velasquez
2022), it uses a loss function to adjust its parameter
that encodes the graph of interest. Furthermore, the ap-
proach discussed by Alkhouri et al. (Alkhouri, Atia, and
Velasquez 2022) uses n trainable parameters where n is
the number of vertices in the input graph. However, the
number of tunable parameters used by the approach dis-
cussed in (Schuetz, Brubaker, and Katzgraber 2022) is
large in size. It uses n parameters in its last layer only. In
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(Alkhouri, Atia, and Velasquez 2022), the authors also
showed some experimental results by comparing them
with the best heuristics available in the literature. They
evaluated success by taking the solution size obtained
by ReduMIS as a benchmark. They also showed that
their experimental results perform as well or outperform
the state-of-the-art learning-based methods discussed in
(Li, Chen, and Koltun 2018).

4 MAXCUT
In this section, we design a dataless neural network
(dNN) for the MAXCUT problem. Note that the MAX-
CUT problem is a special case of the MAXNAE2SAT
problem, where all the literals in the CNF formula are
positive. Thus, the following dNN for the MAXCUT
problem works for the MAXNAE2SAT problem with
positive literals.

Hidden Layer 1

Hidden Layer 2 Output Layer

f(θ)

1

n

n+ 1

n+m

1
2

n+m

en+m

Adjustable: {θ}

Fixed from G: {W, b} Fixed from G: {w}

Fully Connected

+ReLU

Point-Wise
Multiplication Fully

Connected

Input Layer

1
2

n+m

Figure 1: Block diagram of dNN.

Let G = (V,E) be a graph with n vertices over m
edges. We construct a dNN f with trainable parame-
ters θ ∈ [0, 1]n+m with respect to G. That means for
each vertex v ∈ V , there is a corresponding trainable
parameter θv in f . For each edge ei ∈ E, there is
a corresponding trainable parameter θei in f . The in-
put to the dNN is an all-ones vector en+m which does
not depend upon any data. The output of the dNN is
f(en+m; θ) = f(θ) ∈ R. There are four layers in the
dNN for the MAXCUT problem. The four layers are
categorized as one input layer, two hidden layers, and
one output layer (see the block diagram in Figure 1 for
the proposed network). The input layer en+m is con-
nected with the first hidden layer through an elemen-
twise product of the trainable parameters θ. The first
hidden layer is connected to the second hidden layer by
the binary matrix W ∈ {0, 1}n×(n+m). The binary ma-
trix is only dependent onG. At the second hidden layer,
there exists a bias vector b ∈ {0,− 1

2}
2·m. There is a

fully connected weight matrix w ∈ {−1,−n}2·m in the
second hidden layer to the output layer. Note that all the
parameters are defined as a function of G. The output
of f is given as follows:

f(en+m; θ) = f(θ) = wT ·σ((WT · (en+m� θ)) + b).
(1)

Here � is the element-wise Hadamard product that
represents the operation of the first hidden layer of
the constructed network. The fully-connected second
hidden layer consists of the fixed matrix W and a
bias vector b with a ReLU activation function σ(x) =
max(0, x). The last layer is another fully-connected
layer and is expressed in vector w.

On the other hand, we prove that when a max-cut
C ⊆ E in G is found, f(θ) attains its minimum
value. Therefore, f(θ) is an equivalent differentiable
function of the max-cut generated in G. Moreover,
C can be constructed from θ as follows. Let θ∗ =
argminθ∈[0,1]n+mf(θ) be an optimal solution to f . Let
I : [0, 1]m → 2E be a max-cut corresponding to θ
such that I(θ) = {e ∈ E | θ∗e ≥ α}, for α > 0.
We show that |I(θ∗)| = |C|. We choose the edges in
the max-cut C in G corresponding to the indices of θ
whose value exceeds a threshold (say α). From an in-
put graph G = (V,E), the fixed parameters of f can
be constructed as follows: In the binary matrix W , the
first n× n submatrix represents the vertices V of G. Its
weights are set equal to the identity matrix In (see the
5 × 5 submatrix in Figure 2 (b) corresponding to the 5
vertices of G in Figure 2 (a)). Furthermore, the remain-
ing m columns of W represent the edges of G and for
each edge ei = uv ∈ E, the value of u = v = 1 in
the column (see the 6 columns e1 to e6 in Figure 2 (b)
corresponding to the 6 edges of G in Figure 2 (a)). The
bias vector consists of two parts, each with m entries
resulting in 2 ·m entries. For each edge of G, the corre-
sponding value of the first m entries is− 1

2 in the biased
vector b. For each edge, the corresponding value of an-
other m entries in the bias vector is set to 0. Finally, the
value of −1 is assigned in the entries corresponding to
the edges of G in vector w. For another m entries, the
value is set to −n in w. Hence, the parameters W , b,
and w are defined as follows:

W (i, i) = 1, vi ∈ V, i ∈ [n],

W (i, n+ k) = W (j, n+ k) = 1,

∀ek = vivj ∈ E, k ∈ [m],

(2)

b(i) = −1

2
, w(i) = −1, ei ∈ E, i ∈ [m],

b(m+ k) = 0, w(m+ k) = −n, k ∈ [m].
(3)

The function in (1) can be rewritten as follows:

f(θ) = −
∑

ei=uv∈E
(σ(θei−

1

2
)−n ·σ(θei−|θu−θv|)).

(4)
An example of the above discussed dNN construction

is presented in Figure 3.
With the above dNN construction, we prove the fol-

lowing theorem to establish a relation between the solu-
tion of the MAXCUT problem and the minimum value
of f .
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v1

v2

v3

v4

v5

(a) A graph G

W =


v1 v2 v3 v4 v5 e1 e2 e3 e4 e5 e6

v1 1 0 0 0 0 1 0 0 1 0 0
v2 0 1 0 0 0 1 1 0 0 0 0
v3 0 0 1 0 0 0 1 1 0 1 0
v4 0 0 0 1 0 0 0 1 1 0 1
v5 0 0 0 0 1 0 0 0 0 1 1


(b) A binary matrix W

Figure 2: Representation of a binary matrix W corresponding to G.
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Figure 3: Construction of dNN f corresponding to the
graph in Figure 2 (a) for the MAXCUT problem.

Theorem 1 Let G = (V,E) be a graph with m edges
over n vertices. Let f be the corresponding dNN of G.
G has a max-cut of size k, if and only if the minimum
value of f is −k2 .

Proof: Let C ⊆ E be a max-cut of size k in G that
partitions V into two sets S and T . For each v ∈ V ,
if v ∈ S, then set θv = 1. Otherwise, set θv = 0. For
each edge ei ∈ E, set θei = 1, if ei ∈ C; otherwise set
θei = 0. Consider the output f represented in Figure 4
for an arbitrary edge ei = uv ∈ E.

η2ei

η2n+`

f (θ)

η1u

η1v

η1ei

1

1

1

θu

θv

θei

θv

θu −σ(θei −
1
2)

n · σ(θei − |θu − θv|)θei

θei

Figure 4: Output with respect to an arbitrary edge.

As per the construction of the dNN, the edge values
denote the outputs of the preceding nodes in the net-
work. Furthermore, the ith neurons in the first hidden
layer are denoted by η1

i and the second hidden layer is
denoted by η2

i . If ei ∈ C, then the values of both θu and
θv are not equal. Moreover, θei = 1. The above θ val-
ues of the corresponding edge ei will contribute − 1

2 to
f . Furthermore, if ei = uv 6∈ C, then the values of both
θu and θv are equal and θei = 0. The above θ values of

the corresponding edge ei will contribute 0 to f . There
are k edges present in C. Therefore, it will contribute
−k2 to f .

Conversely, assume that the minimum value of the
output function f is f(θ) = −k2 . We construct a max-
cut C for G of size k from f as follows: From the
construction of the dNN, it is clear that, for each edge
ei = uv ∈ E, if θei = 1, then the values of θu and θv
are not equal. Otherwise, f does not achieve its mini-
mum value. To prove this, assume that the values of θu
and θv are equal and θei = 1. It follows that the neu-
ron η2

n+` contributes n · (θei − |θu − θv|) > 0 to the
output f(θ). This is a contradiction to the fact that f
achieves its minimum value. We can simply assign the
value of θei = 0 and reduce the value of f further. So, it
is clear that for any edge ei = uv ∈ E, if θei = 1, then
the values of θu and θv are not equal. Each such edge
ei ∈ E, which θ values of both the end vertices are not
equal and θei = 1 contributes − 1

2 to f(θ) through η2
i .

Furthermore, it contributes a value of 0 to f(θ) through
η2
n+`. That means there are k entries of value 1 in θ cor-

responding to edges. For each ei = uv ∈ E, consider
the θu and θv values. If θu = 0 (θv = 0), then assign
the vertex u (v) in set S. Otherwise, assign the vertex
u (v) in set T . For each edge ei ∈ E, if θei = 1, then
assign ei in the set C. Observe that C is a max-cut in G
of size k that divides V into two sets S and T . �

5 MAXkSAT
In this section, we design a dNN for the MAXkSAT
problem. First, we discuss a dNN for the MAX2SAT
problem and then we generalize it for the MAXkSAT
problem. Let Φ be an instance of the MAX2SAT prob-
lem. Furthermore, assume that Φ has m clauses over n
variables. We construct a dNN f with trainable param-
eters θ ∈ [0, 1]n+m with respect to Φ as follows: For
each variable xi, create a corresponding trainable pa-
rameters θxi . For each clause ci, there is a correspond-
ing trainable parameter θci . The input to the dNN is an
all-ones vector en+m which does not depend upon any
data. The output of the dNN is f(en+m; θ) = f(θ) ∈ R.
Similar to the dNN structure of MAXCUT, the dNN for
the MAX2SAT consists of four layers (see Figure 1 for
the block diagram of the dNN structure). The dNN con-
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sists of one input layer, two hidden layers, and one out-
put layer. The input layer en+m is connected with the
first hidden layer through an elementwise product of
the trainable parameters θ. The first hidden layer is con-
nected to the second hidden layer by the binary matrix
W ∈ {0, 1}2·n×(2·n+m). Here, 2 · n is the total number
of literals size for n variables. That means for a variable
xi, the binary matrix has two entries: one for literal xi
and another for literal x̄i. Note that the binary matrix is
only dependent on Φ. At the second hidden layer, there
exists a bias vector b ∈ {0,− 1

2}
2·m. There is a fully

connected weight matrix w ∈ {−1, n}2·m in the sec-
ond hidden layer to the output layer. Note that all the
parameters are defined as a function of Φ as follows:

f(en+m; θ) = f(θ) = wTσ(WT (en+m�θ)+b). (5)

Note that we represent the value of the variable x̄i
as the complement of the neuron θ̄xi

. That means, if
θxi

is assigned as one then θ̄xi
represents zero. So, the

function in (5) can be rewritten as follows:

f(θ) = −
∑
ci∈Φ

(σ(θci −
1

2
)) + n·

∑
ci=(x̄i∨xj)∈Φ

(σ(θci − (θ̄xi
+ θxj

))).
(6)

Here the clause ci = (x̄i ∨ xj) has taken arbitrarily
to highlight the utilization of the negative literals. We
prove the following theorem using the above dNN:

Theorem 2 Let Φ be an instance of MAX2SAT with m
clauses over n variables. Let f be the corresponding
dNN of Φ. There exists an assignment for Φ that satisfies
k clauses, if and only if the minimum value of f is −k2 .

Proof: Let A be an assignment for Φ that satisfies k
clauses. For each variable xi that is assigned to true,
set the corresponding θxi = 1. If it is assigned to false,
then set θxi

= 0. For each clause ci that is satisfied, set
the corresponding θci = 1. If it is not satisfied, then set
θci = 0. Consider the output f represented in Figure 5
for an arbitrary clause ci = (xi ∨ xj) ∈ Φ.

η2ci

η2n+`

f (θ)

η1xi

η1xj

η1ci

1

1

1

θxi

θxj

θci

θxj

θxi −σ(θci −
1
2)

n · σ(θci − (θxi + θxj))
θci

θci

Figure 5: Output with respect to an arbitrary clause.

As per the construction of the dNN, the clause values
denote the outputs of the preceding nodes in the net-
work. Furthermore, the ith neurons in the first hidden
layer are denoted by η1

i and the second hidden layer is
denoted by η2

i . If clause ci is satisfied, then the value of
both θxi

and θxj
cannot be 0. Moreover, θci = 1. The

above θ values of the corresponding clause ci will con-
tribute − 1

2 to f . Furthermore, if ci is not satisfied, then
the values of θxi

, θxj
, and θci are 0. The above θ val-

ues of the corresponding clause ci will contribute 0 to
f . There are k clauses that are satisfied by assignment
A. Therefore, it will contribute −k2 to f .

Conversely, assume that the minimum value of the
output function f is f(θ) = −k2 . We construct an as-
signment A for Φ that satisfies k clauses from f as
follows: From the construction of the dNN, it is clear
that, for each clause ci = (xi ∨ xj), if θci = 1,
then θci − (θxi

+ θxj
) ≤ 0. Otherwise, f does not

achieve its minimum value. To prove this, assume that
θci − (θxi + θxj ) > 0. It follows that the neuron η2

n+`

contributes n · σ(θci − (θxi + θxj )) > 0 to the output
f(θ). This is a contradiction to the fact that f achieves
its minimum value. We can simply assign the value of
θci = 0 and reduce the value of f further. So, it is clear
that for any clause ci = (xi ∨ xj), if θci = 1, then
θci − (θxi

+ θxj
) ≤ 0. Each such clause, which θ value

is one, contributes− 1
2 to f(θ) through η2

i . Furthermore,
it contributes a value of 0 to f(θ) through η2

n+`. That
means there are k entries of value 1 in θ correspond-
ing to clauses. For each θci = 1, consider the θxi

and
θxj values. If θxi = 0 (θxj = 0), then assign the truth
value of variable xi (xj) as false. Otherwise, assign the
truth value of variable xi (xj) as true. Similarly, assign
the truth values of the variables when θci = 0. Observe
that it will lead to an assignment A for Φ that satisfies
k clauses. �

Corollary 1 The above-discussed dNN for the
MAX2SAT problem can be generalized for the
MAXkSAT problem.

Proof: Observe that the above-discussed dNN for
MAX2SAT can capture MAXkSAT by changing the en-
tries of the binary matrix W . For each clause in Φ, the
corresponding column in W matrix has k entries as one
instead of two in case of MAX2SAT. The values of the
parameters θ, b, and w are the same in the dNN. In this
case, f(θ) can be represented as follows:

f(θ) = −
∑
ci∈Φ

(σ(θci −
1

2
)) + n·

∑
ci=(x1∨···∨xk)∈Φ

(σ(θci − (θx1
+ · · ·+ θxk

))).
(7)

The construction and the proof for the MAX2SAT
problem will follow for the MAXkSAT problem. �
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6 MAXNAE2SAT
In this section, we design a dNN for the
MAXNAE2SAT problem. Observe that the dNN for
the MAXCUT problem captures the MAXNAE2SAT
problem when all the literals of the formula Φ are
positive. We design a dNN for the MAXNAE2SAT
problem, where the problem instance Φ consists of
both positive and negative liters.

Let Φ be an instance of the MAXNAE2SAT prob-
lem with m clauses over n variables. We construct a
dNN f with trainable parameters θ ∈ [0, 1]n+m with
respect to Φ as follows: For each variable xi, there
is a corresponding trainable parameter θxi

. For each
clause ci, there is a corresponding trainable parame-
ter θci . The input to the dNN is an all-ones vector
en+m which does not depend upon any data. The out-
put of the dNN is f(en+m; θ) = f(θ) ∈ R. Similar
to the above-discussed dNN structures, the dNN for the
MAXNAE2SAT consists of one input layer, two hid-
den layers, and one output layer. The input layer en+m

is connected with the first hidden layer through an el-
ementwise product of the trainable parameters θ. The
first hidden layer is connected to the second hidden
layer by the binary matrix W ∈ {0, 1}2·n×(2·n+m).
At the second hidden layer, there exists a bias vector
b ∈ {0,− 1

2}
2·m. There is a fully connected weight ma-

trix w ∈ {−1, n}2·m in the second hidden layer to the
output layer. Observe that all the parameters are defined
as a function of Φ. The output of the dNN f corre-
sponding to the MAXNAE2SAT problem is given by
(5). The second hidden layer consists of the fixed matrix
W and a bias vector b with a ReLU activation function
σ(x) = max(0, x). The last layer consists of the vector
w.

Therefore, we can rewrite the function in (5) as fol-
lows:

f(θ) = −
∑
ci∈Φ

(σ(θci −
1

2
)) + n·

∑
ci=(x̄i∨xj)∈Φ

(σ(θci − |θ̄xi
− θxj

|)).
(8)

We have used the clause ci = (x̄i ∨ xj) for showing
the utilization of negative literals by the function and it
is taken arbitrarily. With the above dNN construction,
we prove the following theorem.

Theorem 3 Let Φ be an instance of MAXNAE2SAT with
m clauses over n variables. Let f be the corresponding
dNN of Φ. There exists an assignment for Φ that nae-
satisfies k clauses, if and only if the minimum value of
f is −k2 .

Proof: Let A be an assignment for Φ that nae-
satisfies k clauses. For each variable xi that is assigned
to true, set the corresponding θxi

= 1. If it is assigned
to false, then set θxi

= 0. For each clause ci that is

nae-satisfied, set the corresponding θci = 1. If it is
not nae-satisfied, then set θci = 0. Consider the out-
put f represented in Figure 6 for an arbitrary clause
ci = (xi ∨ xj) ∈ Φ.

η2ci

η2n+`

f (θ)

η1xi

η1xj

η1ci

1

1

1

θxi

θxj

θci

θxj

θxi −σ(θci −
1
2)

n · σ(θci − |θxi − θxj |)θci

θci

Figure 6: Output with respect to an arbitrary clause.

As per the construction of the dNN, the clause values
denote the outputs of the preceding nodes in the net-
work. Furthermore, the ith neurons in the first hidden
layer are denoted by η1

i and the second hidden layer
is denoted by η2

i . If clause ci is nae-satisfied, then the
values of both θxi

and θxj
cannot be same. Moreover,

θci = 1. The above θ values of the corresponding clause
ci will contribute− 1

2 to f . Furthermore, if ci is not nae-
satisfied, then the values of both θxi , θxj is either 0 or
1. However, the value of θci is 0. The above θ values
of the corresponding clause ci will contribute 0 to f .
There are k clauses that are nae-satisfied by assignment
A. Therefore, it will contribute −k2 to f .

Conversely, assume that the minimum value of the
output function f is f(θ) = −k2 . We construct an as-
signment A for Φ that nae-satisfies k clauses from f as
follows: From the construction of the dNN, it is clear
that, for each clause ci = (xi ∨ xj), if θci = 1,
then θci − |θxi − θxj | ≤ 0. Otherwise, f does not
achieve its minimum value. To prove this, assume that
θci − |θxi − θxj | > 0. It follows that the neuron η2

n+`

contributes n · σ(θci − |θxi − θxj |) > 0 to the output
f(θ). This is a contradiction to the fact that f achieves
its minimum value. We can simply assign the value of
θci = 0 and reduce the value of f further. So, it is clear
that for any clause ci = (xi ∨ xj), if θci = 1, then
θci − |θxi

− θxj
| ≤ 0. Each such clause, which θ value

is one, contributes− 1
2 to f(θ) through η2

i . Furthermore,
it contributes a value of 0 to f(θ) through η2

n+`. That
means there are k entries of value 1 in θ corresponding
to clauses. For each θci = 1, consider the θxi and θxj

values. If θxi = 0 (θxj = 0), then assign the truth value
of variable xi (xj) as false. Otherwise, assign the truth
value of variable xi (xj) as true. Similarly, assign the
truth values of the variables when θci = 0. Observe that
it will lead to an assignmentA for Φ that nae-satisfies k
clauses. �

6



References
Akiba, T., and Iwata, Y. 2016. Branch-and-reduce expo-
nential/fpt algorithms in practice: A case study of vertex
cover. Theoretical Computer Science 609:211–225.
Alkhouri, I. R.; Atia, G. K.; and Velasquez, A. 2022.
A differentiable approach to the maximum independent
set problem using dataless neural networks. Neural Net-
works 155:168–176.
Bengio, Y.; Lodi, A.; and Prouvost, A. 2021. Machine
learning for combinatorial optimization: a methodolog-
ical tour d’horizon. European Journal of Operational
Research 290(2):405–421.
Boppana, R., and Halldórsson, M. M. 1992. Approx-
imating maximum independent sets by excluding sub-
graphs. BIT Numerical Mathematics 32(2):180–196.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer.
Drori, I.; Kharkar, A.; Sickinger, W. R.; Kates, B.; Ma,
Q.; Ge, S.; Dolev, E.; Dietrich, B.; Williamson, D. P.;
and Udell, M. 2020. Learning to solve combinatorial
optimization problems on real-world graphs in linear
time. In 2020 19th IEEE International Conference on
Machine Learning and Applications (ICMLA), 19–24.
Festa, P. 2014. A brief introduction to exact, approxi-
mation, and heuristic algorithms for solving hard com-
binatorial optimization problems. In 2014 16th Inter-
national Conference on Transparent Optical Networks
(ICTON), 1–20.
Flum, J., and Grohe, M. 2006. Parameterized Complex-
ity Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer.
Fomin, F. V., and Kratsch, D. 2010. Exact Exponential
Algorithms. Texts in Theoretical Computer Science. An
EATCS Series. Springer.
Gaspers, S. 2010. Exponential Time Algorithms - Struc-
tures, Measures, and Bounds. VDM.
Jena, S. K.; Subramani, K.; and Velasquez, A. 2023.
Differentiable discrete optimization using dataless neu-
ral networks. The 16th Annual International Confer-
ence on Combinatorial Optimization and Applications
(COCOA), 2023 (accepted).
Lamm, S.; Sanders, P.; Schulz, C.; Strash, D.; and Wer-
neck, R. F. 2016. Finding near-optimal independent
sets at scale. In 2016 Proceedings of the Eighteenth
Workshop on Algorithm Engineering and Experiments
(ALENEX), 138–150.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinato-
rial optimization with graph convolutional networks and
guided tree search. Advances in neural information pro-
cessing systems 31.
Mazyavkina, N.; Sviridov, S.; Ivanov, S.; and Burnaev,
E. 2021. Reinforcement learning for combinatorial

optimization: A survey. Computers & Operations Re-
search 134:105400.
Niedermeier, R. 2006. Invitation to Fixed-Parameter
Algorithms. Oxford University Press.
San Segundo, P.; Rodrı́guez-Losada, D.; and Jiménez,
A. 2011. An exact bit-parallel algorithm for the max-
imum clique problem. Computers & Operations Re-
search 38(2):571–581.
Schuetz, M. J.; Brubaker, J. K.; and Katzgraber,
H. G. 2022. Combinatorial optimization with physics-
inspired graph neural networks. Nature Machine Intel-
ligence 4(4):367–377.
Vazirani, V. 2002. Approximation Algorithms. Springer
Science Publishers, 1st edition.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding
the data-decisions pipeline: Decision-focused learning
for combinatorial optimization. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
1658–1665.

7 Acknowledgments
This research was supported in part by the Defense
Advanced Research Projects Agency through grant
HR001123S0001-FP-004.

7


