Extending the Tractability of the Clique Problem
via Graph Classes Generalizing Treewidth

Philippe Jégou
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
philippe.jegou @univ-amu.fr

Abstract

The study of the Clique problem in algorithmic graph theory
is important both because it is a central problem in complex-
ity theory, almost at the same level as SAT (Johnson and Trick
1996), but also because its practical resolution has many ap-
plications, notably in Artificial Intelligence (e.g. checking
consistency of a binary CSP is equivalent to check the size
of maximum clique in its microstructure (Jégou 1993)). A
great deal of work has therefore been carried out, and this
paper attempts to extend the results obtained in this field. It
starts from the observation that this problem is tractable in
polynomial time on graphs whose treewidth (Robertson and
Seymour 1986) are bounded by a constant (see (Courcelle
1990)). Although this type of result is very interesting from
a theoretical point of view, it often remains limited in terms
of application. So, we propose here an extension of this type
of approach based on the definition of graph classes wider
than those of bounded treewidth, but for which we would
be able to propose polynomial time algorithms. These graph
classes denoted CF, include graphs of treewidth W -+ k, but
also contain, even if k and W are constants, graphs known to
be of unbounded treewidth. These Cf classes are introduced,
their fundamental properties are given and the associated al-
gorithms are presented and evaluated.

Introduction

In Artificial Intelligence algorithms, the Clique Problem in
a graph plays a significant role, as it can be found in a large
number of application domains. For example, we know that
a binary CSP has a solution if and only if its microstructure
expression has a clique whose size corresponds to the num-
ber of variables in the instance. Beyond this domain, this
problem, which is NP-complete, has a wide range of appli-
cations in optimization, and is, along with SAT, one of the
central problems of Complexity Theory. So this is a prob-
lem that can legitimately be the subject of a study in its own
right. Its statement is very simple: given a (undirected) graph
G and an integer k, the question is whether G has a complete
subgraph of k (or more) vertices. The associated optimiza-
tion problem, called Maximum Clique Problem, consists of
determining the largest clique in a graph.

If there are tractable classes (i.e. tractable in polynomial
time), as with many other difficult problems, one way of
tackling it is to use FPT-type approaches (Downey and Fel-
lows 1999), even if Clique is not FPT. But this is made pos-
sible by using the notion of tree-decomposition of graphs

and the associated notion of treewidth (Robertson and Sey-
mour 1986). This notion now plays a fundamental role in
many fields, notably in the efficient processing of graphi-
cal models (CSP, WCSP, cost function networks, Bayesian
networks, etc.). Fundamental results with first Arnborg
(Arnborg 1985), then Courcelle’s meta-theorem (Courcelle
1990), have shown that for the case where a graph has a
treewidth bounded by a constant, many problems, including
the Clique problem, can then be handled in polynomial time.

In this paper, we address these issues by defining a the-
oretical tool related to the notion of tree-decomposition, for
constructing an infinite number of recusively defined graphs.
Under certain assumptions, these classes allow us to propose
polynomial time algorithms for solving the Clique problem.
These classes of graphs, called CF,, are defined by consider-
ing two parameters, k and 1. We show that any graph G in
Ct, is recognizable in O(n?* x T(G, W)) where T' depends
on G and W, W being the treewidth of a graph accessible af-
ter k operations on GG. We show that if this parameter W is a
constant, then T'(G, W) is a polynomial factor, which means
that instance belonging to Cf;, can be processed in polyno-
mial time. In the approaches based on tree-decomposition ,
the difficulty often arises from the fact that classes of graphs
have treewidths that are potentially unbounded by constants,
as it is the case for planar graphs and complete bipartite
graphs. This problem seems to disappear for some of these
classes, such as the two mentioned above, with the use of
C"fv classes. For example, we show that all planar graphs be-
long to class C3, even though the treewidth of these graphs
is in ©(y/n) for graphs of n vertices. We also show that any
graph of treewidth TV + k belongs to class CL,, which leads
us to hope that this double parameterization offers a more
accurate view of instance difficulty than that indicated by
treewidth alone.

This paper is organized as follows. In the next section,
we introduce notations and basic notions. In the third sec-
tion, we define Ck, classes and present two fundamental
properties, one of which is used in the next section where
we exhibit an algorithm for recognizing these classes. In
the fifth section, we present an algorithm for solving the
clique problem for the case of graphs belonging to a C"fv
class, and the analysis of its complexity allows us to high-
light tractable cases while the sixth section show that some
classes of graphs of unbounded treewidth appear in classes

CI’}, such that k¥ and W are constants. Finally, to conclude
this paper, we discuss the relevance of these new classes as
a general tool complementary to tree-decomposition.

Preliminaries

First of all, we remind a few notations and definitions. Let
G = (V, E) be a finite undirected graph with V' the set of
vertices and E the set of edges. An edge of F is denoted
{z,y} with z,y € V. We use n to denote the number of
vertices (so |V| = n) and e to denote the number of edges
(so |E| = e). Given a subset of vertices X C V, the graph
G[X] denotes the subgraph of GG induced by the subset of
vertices X. A clique of a graph is a subset K of the ver-
tices such that every two vertices x,y € K is an edge, i.e.
{z,y} € E. A complete graph is a graph G = (V, E) such
that V' is a clique of G (It is usually referred to as K). Given
a graph G = (V, E), for each vertex x € V, the neighbor-
hood of z is the set N(z) = {y € V : {z,y} € E}. If
o = [x1,x2,...,2,] is an ordering of V, the successors of
a vertex x; are the elements of the set N*(z;) = {z; €
N(z) : i < j}. Now, we recall the definition of the tree-
decomposition of a graph (Robertson and Seymour 1986)
and the its associated parameter called treewidth:

Definition 1 A tree-decomposition of a graph G = (V, E)
is a pair (B,T) where T = (I, F) is a tree (I is a set of
nodes and F a set of edges) and B = {B; : i € 1} a
Sfamily of subsets of V' such as every B; € B (called bag)
corresponds to a node i of T and satisfies:

1. UerB; =V,

2. Yx,y} € E, Ji € I such that {x,y} C B;, and

3. Vi,j, k € I, if k is on a path between i and j in T, then
B;NB; C By

The width of a tree-decomposition is equal to maz;c | B;| —

1 and the treewidth of G denoted tw(G) is equal to the min-

imum width among all the tree-decompositions of G.

A Generalization of Treewidth
by Defining New Graph Classes

Here we define an infinite number of recursively defined
graph classes that generalize graphs of a given treewidth,
and therefore also graphs of bounded treewidth. We will
see that such a definition can be seen as a generalization of
graph treewidth.

Definition 2 Let W € N be a constant. The class of graphs
CY is the set of graphs G whose treewidth is at most W,
that is tw(G) < W. Given a natural number k > 0, the
class of graphs CE, is the set of graphs G = (V, E) such
that there is an ordering o = [x1,%2,...,2Zy] of V, such
that, for i = 1,2,...,n, the subgraph G[N} (z;)] belongs
to C’;{l. Such an ordering o is called C’;V scheme.

We illustrate this definition below, showing in particular that
the same graph can belong to different classes of type C{EV.
This is simply made possible by the use of a double param-
eterization with k and W.

Since the treewidth of the graph in Figure 1 is 4, this graph
trivially belongs to Cg. Moreover, for this graph, whatever
the ordering o considered on its vertices, the neighbor-
hood of each vertex has a treewidth at most equal to two.
Morevover, there will always be at least one vertex whose
neighborhood has a treewidth equal to two. So, for each ver-
tex x, the subgraph G[N,\(x)] € C3. Therefore, this graph
belongs to C2 since it admits a C3 scheme. Although this is
more difficult to observe directly, we can also show that this
graph belongs to the class C3. We can see that this graph also
belongs to many other classes, by simply changing the value
of parameter W. For example, it belongs to any CY}, class,
taking W > 4.

Figure 1. A graph whose treewidth is 4.

We give now a fundamental property about these classes.
Theorem 1 VG, iftw(G) < W + k, then G € C},.

Proof. We prove this property by induction on k.

First, for the base case, consider G € C%,, ie. k= 0.By
definition, tw(G) < W. Note that this result holds also for
k = 1. Indeed, for G = (V, E) such that tw(G) < W + 1,
there is a tree-decomposition of G such as, for all bags B,
|B;j| < W +2. So, there is an ordering o = [z1, Z2, . . ., Ty
on V, such that, Vi, 1 < i < n, tw(G[N}(z;)]) < W. To
ensure this, it is sufficient to see that if one consider a leaf B;
of the tree-decomposition, its size is at most W + 2. In this
bag B, consider a vertex which is not included in a neigh-
boring bag. So, its neighborhood N (x) is exactly B;\{x}
whose the size is at most W + 1, and thus, the treewidth
of G[N(z)] is at most W. A such vertex x can be consid-
ered as the first one in the ordering o. A similar reasoning
can be extended to all the bags of such a tree-decomposition,
and also, to all the vertices of G to complete the ordering o.
Therefore, the ordering o is then a C;, scheme of G.

Now, assume that the property is true for all &, such
as 0 < K < K, that is, if tw(G) < W + K/, then
G € C{f‘;. We prove that this property also holds for k.
Let G = (V, E) be a graph such as tw(G) < W + k. So,
there is a tree-decomposition of G such as, for all bags B,
|Bj| < W + k + 1. By the same reasoning as for k = 1,
we can define an ordering on o = [z1,%3,...,2,] on V,
such that, |N}(z;)| < W + k, and then, Vi, 1 < i < n,
tw(G[NF(z;)]) < W + k — 1. So, using the induction
hypothesis, G € Cﬁf ! and by definition, a such ordering o
is a Ck, scheme of G, and thus G € CE,. QED.

This basic property on C{fV classes thus allows us to consider
that this type of class makes it possible to generalize the
notion of treewidth of graph using the additional parameter

k. Indeed, we can reduce any graph of treewidth at most
w to graphs of parameters W and k, with W + k = w,
knowing that the graphs of treewidth at most w already
belong to the base class C?U. And therefore, we can even
estimate that the notion of tree decomposition of a given
treewidth is generalized by classes with double parameters
W and k.

The following property shows the hereditary structure of
all these classes, that is, for a graph of a given class Cf,,
all its subgraphs belong to this class. We will see later that
this property is of interest from an algorithmic point of view.

Theorem 2 VIV > 0, Vk > 0, VG = (V,E) € CE,, then
VX CV,G[X] eCk,.

Proof. We prove this property by induction on k. For k = 0,
the property holds since graphs that belong to CY} are graphs
whose the treewidth is bounded by W and since it is well
known that every subgraph of a graph of a given treewidth
has at most the same treewidth. So every subgraph G[X] of
a graph G € CY}, belongs too to CY,.

Suppose now that this property holds Vk/',0 < k' < k.
Let G = (V, E) belonging to Cji, and z € V. We prove
that G[V\{z}] = G’ belongs to CF,. Let the ordering
o = [w1,72,...,2,] be the associated CF, scheme of G.
Consider now ¢’ the ordering [x1,...2;—1,Tit1,. .. Tp] of
V\{z} where x = x;. We show that the ordering o’ is a CL,
scheme of G”:

o Vj i4+1 < j < n,itisclear that with respect to the order-
ings o and o’, GIN*(z;)] = G'[N*(x;)] and since G
belongs to Ck,, then G'[N*(x;)] = G[N*(z;)] belongs
to Ch L.

e V5.1 < j <i—1,itisclear that with respect to the order-
ings o and o’, G'[N"(z;)] is a (non-necessarily strict)
subgraph of G[N*(z;)] which belongs to CE*. So, by
induction hypothesis, every subgraph of a graph belong-
ing to Cl- ! belongs to Cfi- . So, G'[N* (r;)] belongs to
cht

So, Vj # i,1 < j < n with respect to the ordering o’,
the induced subgraph G'[N*(z;)] belongs to CE*, and
then, the ordering o’ is a C"fv scheme of G’ and thus,
G' € CE,.QED.

This second theorem is useful for testing membership of
a C’V“V class, which is the question addressed in the next sec-
tion.

Recognition of Graphs of a Given Class CF,

The question of recognizing graphs of a given class CI’fV
is now asked. We show first that this is feasible, and we
will then see that the complexity is of course linked to the
assumptions we can make about the parameter /. Indeed,
determining the treewidth of a graph is well known to be
an NP-hard problem (Arnborg, Corneil, and Proskuroswki
1987). So, to know whether a graph is in a C{}, class, we first

have to determine whether its treewidth is at most ¥/. On
the other hand, if W is a constant, we can rely on efficient
algorithms, since the problem is then known to be tractable
(i.e. its time complexity is polynomial (Bodlaender 1996)).
In the sequel, let T'(G, W) denotes the time complexity to
check if the treewidth of a graph G is bounded by W. The
value of T(G, W) can be different, depending on whether
the value of W is bounded by a constant or not.

Consider an integer W and a graph G. Recognizing whether
G belongs to the class CY}, can be done directly by calculat-
ing the treewidth of G and checking whether it is less than or
equal to W. Now consider an integer k. If k = 1, a necessary
condition for G to belong to Cj;, is that there exists a first
vertex z1 of G such that its neighborhood has a treewidth
less than or equal to W. If no vertex satisfies this condition,
then G does not belong to C‘I,V. On the other hand, if such
a vertex does exist, then it can be the first vertex in a C‘ﬁv
scheme o. Furthermore, if G belongs to Ci, by the heredity
property presented in the previous section, the subgraph of
G[V\{z1}] belongs to Cj;, and there exists a vertex z such
that its neighborhood in G[V'\{x;}] induces a graph whose
the treewidth is less than or equal to W. This process can be
repeated until all the vertices in G have been eliminated. If
all the vertices of G are indeed eliminated, then G belongs
to C%V. If all the vertices of G are not eliminated, then G
does not belong to Cjy,. This approach defines an algorithm
whose complexity is bounded by O(n? x T(G,W)) since
the C};; scheme o which is computed needs to order the n
vertices of GG, and for each one, we have to check for the
treewidth of at most n sugraphs.

Such an approach can be generalized to other values
of k to define the algorithm called RecoG-CkW for
the recognition of graphs of the class C{SV. If an input
graph belongs to C{fv, this algorithm returns T'rue and an
associated scheme o, otherwise, it returns False. In this
algorithm, to simplify notations, we consider N,(z) to
denote the subset of unnumbered vertices appearing in the
neighbourhood of a vertex x in G. Note that at line 6, the
recursive call of RecoG-CkW in the condition matches to
the test G[N,,(2)] € Cir t.

Theorem 3 For k > 0, if G € Ck. the algorithm RecoG-

CEkEW returns True and a C{fv scheme (if k > 0), otherwise,
it returns False.

Proof. We prove this result by induction on k. This property
trivially holds for £ = 0 since the algorithm is limited to
testing the treewidth of G (line 2).

Now, consider a graph G = (V, E) and k > 0, and as-
sume that RecoG-CkW is correct when calling with a pa-
rameter &’ such that &’ < k. If G € CE,, necessarily, G pos-
sesses a vertex a such that G[N,, (z)] belongs to Cf; *. This
vertex will be the first one in a C{fV scheme and by induction
hypothesis, the recursive call RecoG-CkW(G[N,(z)], k —
1, W) returns True. Using the heredity of graphs belonging
to C{SV, the same reasoning can be applied to the subgraph
induced by G[V'\{z}], And so on, until all the vertices of G
are deleted. This will lead to the generation of an ordering o

Algorithm 1: RecoG-CkW

Input: G = (V, E) : graph; k£ > 0, W : integer;
Qutput: o : ordering; CkWW : boolean,;

/1if G € C{},, returns True and o is the scheme,
// else, returns False

1: if K = 0 then

2 CkW + (tw(G) <W);

3: else

4 o« []; CkW < True; i + 1;
5: while CEW and i < n do

6: if 3z € V : RecoG-CkW(G[N,(z)],k — 1, W)

then

7: oli] «+ x;

8: L1+ 1;

9: V «— V\{z};
10: else
11: CEW <« False;
12: end if
13: end while
14: end if

15: return CkW;

on V, and ends the loop with CkW being true, which will
then be the value returned by RecoG-CkW .

On the other hand, if G ¢ ck.. no C{,‘}; ! scheme can be
find. So, during the while loop, necessarily, after some dele-
tions of vertices x, none of the vertices belonging to the re-
sulting set V such that G[N, ()] € Cii-* will be found, and
then, the while loop stops after the assignment of CkW to
False, which will be the value returned by RecoG-C'kW .

For the termination of the algorithm, simply note that with
each recursive call, the value of k decreases strictly, so if the
algorithm does not stop before then, the case k = 0 will be
reached and the execution will stop.

Thus, in all cases, this algorithm terminates and the
returned result is correct. QED.

The following property indicates the time complexity of this
algorithm.

Theorem 4 The time complexity of the algorithm RecoG-
CEW is O(n?* x T(G,W)).

Proof. The worst case time complexity occurs for graphs
that belongs to Cf,. In this case, the while loop will be exe-
cuted n times. In this case, the cost of the algorithm is given
by the cost of the condition in line 6. The condition con-
tained in the if conditional statement potentially imposes the
execution of an additional loop to find a vertex verifying the
condition, and this loop will run from the current value i to
n, which is bounded by n. This leads to a multiplicative fac-
tor n which is cumulated to that of the while loop, giving a
multiplicative factor equal to n2. So, find a suitable vertex
induces a factor n? that must be considered with the cost of
the recursive call to RecoG-CkW associated to the condi-
tion G[V\z] € Cfi-!. So, the time complexity C(k) is given
by a recurrence relation based on k:

e For k = 0, the cost C(k) = C(0) is O(T(G,W)) be-
cause the time complexity in line 2 is O(T(G, W))
e For k > 1, the cost C(k) is O(n? x C(k — 1))

Thus, from this recurrence relation, we can easily prove
that the time complexity of the algorithm RecoG-CkW is
O(n?* x T(G,W)). QED.

So, if W and k are defined as constant, the time complexity
of the algorithm RecoG-CkW is then polynomial since we
know a linear time algorithms for checking if the treewidth
of a graph is equal to a given integer W (Bodlaender 1996),
and then, T(G, W) € O(|G]).

Corollary 1 If W is bounded by a constant, the time com-
plexity of RecoG-CkW is in O(n?* x |G|).

Class C, and Tractability of the
Maximum Clique Problem

We now consider the problem of finding a maximum size
clique in a graph. We will show that this problem, although
known to be NP-hard, can be solved in polynomial time on
graph classes of type Ck,, under the assumption that the
base class C{), has a parameter W which is a constant while
k is also a constant. To solve this problem, we define the
algorithm MaxzClig-CkW. We show its correctness and,
then, we evaluate its time complexity. We can then see that,
under the assumption that the instance processed as input
belongs to a given class C{}, for which k£ and W are con-
stants, then this algorithm has a polynomial time complexity.

At the first step of the algorithm (lines 1-2), if £ = 0,
a maximum size clique of G is found, exploiting a tree-
decomposition of G whose width is at most W.

For the general case, i.e. & > 0, a CI’}, scheme o of
G is computed with a call to RecoG-CkW. Using this
ordering, every vertex x is checked to find a maximum size
clique in the associated subgraph G[N.’(z)], knowing that
this subgraph belongs to C{f’v_ ! After the for loop, we are
ensured that K contains the maximum size clique of the
graph G.

Theorem 5 Fork > 0, if G € CF,, the algorithm MaxCliq
returns a maximum size clique of G.

Proof. We prove this result by induction on k.

For k = 0, using a basic algorithm, MaxzCliq finds
a maximum size clique in the graph G assuming that its
treewidth is bounded by W.

Now, consider the graph G and k£ > 0, and assume that
MazxCliq is correct when it is called with a parameter k'
such that ¥’ < k. As G € Cf,, and since o is a C, scheme,
for all i, 1 < 4 < n, each subgraph G[N (x;)] belongs
to C{f[f ! and therefore, applying the inductive hypothesis
about the correction of MaxCliq(), each recursive call
MaxCliq(G[N.f (z;)], k — 1, W) returns a maximum size
clique of G[N (x;)] which is assigned to K; (line 8). Thus,
K; U {x;} is a maximum size clique of G[N,}(z;) U {z;}].
Now, consider K’, a maximum size clique of G, and

Algorithm 2: MaxCliq

Input: G = (V, E) : graph; k£ > 0, W : integer;

Output: K : set of vertices;

/I K max size clique of G € CE,
1: if &k = 0 then
2: K < Maximum Size Clique of G,
3: else

4: Find a Cf, scheme o using RecoG-CkW

50 K« 0

6

7

8

for i < 1;0 <mn;i<i+1)do
x + ofi];
K; + MaxCliq(G[N; (z)], k — 1, W),

if |K; U {z}| > | K| then
10: K+ K;U{z};
11: end if
12: end for
13: end if
14: return K

let z; € K', be the first vertex of K’ with respect to the
ordering 0. Necessarily, K’ C (N (z;)U{z;}). Therefore,
after the call MaxCliq(G[N; (z;)],k — 1,W), we have
|K’" U{z;})| = |K; U{z;})|. Note that here, we consider
sizes of cliques rather than cliques themselves because it
can exists several (so different) maximum size cliques in a
given (sub)graph. So, MaxCliq is correct when it is called
with the parameters G, k and . Finally, for the termination
of the algorithm, as for the algorithm RecoG-CkW, we can
see that with each recursive call, the value of k decreases
strictly, and so the case £ = 0 will be reached and the
execution terminated. QED.

We evaluate the complexity of this algorithm by assuming
that the time complexity of computing a clique of maximum
size in a graph of treewidth W is given by TC'(G, W).

Theorem 6 For k > 0, if G € CL,, the time complexity of
MazCliq is O(k.n?* x T(G,W) +nk x TC(G,W)).

Proof. For £k = 0, assume that the time complexity is
bounded by TC'(G, W) which is the time needed to com-
pute a clique of maximum size in a graph G whose treewidth
is W (line 2).

Now, assume &k > 1 and let Clig(k) be the time complex-
ity of M axCliq for a value k. In line 4, the time complexity
of the call to RecoG-CkW is O(n** x T(G,W)). Next, the
instructions in lines 7 to 10 are executed n times. In these
lines, it is sufficient to consider the running time of the line
8 which is Clig(k — 1) since the recursive call of MaxCliq
considers k — 1 as input. So, the time complexity Clig(k) is
given by a recurrence relation based on k:

e For k =0, Clig(k) = Clig(0) is O(TC(G,W))
e Fork > 1, Clig(k) = n?* x T(G,W) + n.Clig(k — 1)
The solution for this relation is :

Clig(k) = n* x (T(G,W) x =F_n® + TC(G,W))

which can easily be proved by induction. So, the time
complexity of the algorithm MaxzClig can be bounded by

O(kn?* x T(G,W) +n* x TC(G,W)). QED.

So, if W and k are defined as constant, the time complex-
ity of the algorithm MaxCliq is then polynomial since
we know linear time algorithms for checking the treewidth
and looking for its maximal size clique, ie. (G, W) and
TC(G,W) can be replaced by |G| :

Corollary 2 If W is bounded by a constant, the time com-
plexity of MaxCliq is in O(k.n?* x |G|).

We can see that the parameter k£ plays a fundamental role
here, as the practical tractability of the clique problem will
be bound in this approach by the value of k. Moreover, it is
also well known that difficult instances of the clique prob-
lem, but not only of course, have treewidths not bounded
by constants. Nevertheless, we show in the next section that
such instances can belong to classes of type Cf, for which
the value of k is small.

Classes C};; and Graphs of
Unbounded Treewidth

It is well known that numerous hard problems, such as the
Clique problem for example, are simple to solve as long as
their treewidth is bounded by a constant, while they remain
hard for the class of graphs of unbounded treewidth. But we
show here that classes of graphs of unbounded treewidth can
exist, but for which the parameter £ can be equal to 1, and
the treewidth W can be equal to a small value constant. This
is the case of planar graphs for which we know that their
treewidth belongs to ©(y/n):

Proposition 1 Planar graphs belong to class Ca.

Proof. To show that planar graphs belong to the class C3,
consider a planar graph G = (V, E). We show that for such
graphs, there exists an ordering o = [x1,2,...,2,] of V
such that for i = 1,2,...,n, the subgraph G[N (z;)] be-
longs to C3, that is the class of graphs with a treewidth of 3
or less.

It is well known that for any planar graph, there exists a
vertex whose degree is at most 5 (a folklore property derived
from Euler’s formula). So, consider such a vertex z1 in G.
So, [N(z1)| < 5, and since G is planar, G[N (z1)] # K5
and its treewidth is at most 3 because G[N (x1)] can contain
at most 5 vertices and the edges forming 2 cliques of size 4,
that is the two cliques K 4. Now consider the subgraph of G
defined by G[V\{z1})]. Since G is planar, G[V\{z1})] is
planar too. So G has a vertex zo ,whose degree is at most
5, and the same reasoning as above can be used to show
that the subgraph G[N(x3)\{z1}] belongs to CJ. More
generally, we can define an ordering o = [x1, xa, . . ., x,] of
V which is a C3 scheme, allowing to prove that G belongs
to C3. QED.

If this result seems significant from a theoretical point of
view, it is less relevant when we refer to the problem of
the clique of maximum size. Indeed, it is well known that
a planar graph cannot possess a clique of size greater than
or equal to 5, and thus we then have a trivial polynomial
algorithm enumerating all subsets of 4 vertices or less to

find a clique of maximum size. So, it is useful to show that
there exists other classes of graphs, non-planar for example,
for which we have similar properties in terms of parame-
ter k while keeping W equal to a constant. This is the case
for the complete bipartite graphs K, ,, whose treewidth is
n. Indeed, for K, ,, it is easy to see that there is a tree-
decomposition defined by n bags, each one being associated
to one vertex of one on the two sets, and including also the
n vertices of the other set. Its treewidth is then n. Moreover,
this width is minimal because any optimal triangulation or-
der minimizing the size of the largest induced clique (and
therefore the width) will have to start with any vertex from
K, » and since these vertices have the same degree, i.e. n,
the first vertex will be include in a clique of size n + 1, and
therefore the width will be at least equal to n. Despite their
unbounded treewidth, these graphs belong to the C} class
because the neighborhood of any vertex is a set vertices be-
tween which there are no edge. Consequently, the treewidth
of this neighborhood is always 0. And this applies regard-
less of the order of the vertices. So every complete bipartite
graph on n vertices belongs to C} while its treewidth is 5.

Discussion and Conclusion

As we have seen, the definition of C{fV classes makes it pos-
sible to design polynomial time algorithms for the Clique
problem. This is all the more interesting in that, unlike
the use of treewidth, for instances where treewidth is not
bounded by a constant, the use of this double parameteriza-
tion allows some of these instances to be processed in poly-
nomial time. So, a natural question arises. ”Can this defini-
tion of a new class of graphs be extended to handle other
difficult problems 7’ We know that for the case of bounded
treewidth, many problems can become tractable because we
can obtain efficient approaches for hard problems thanks to
FPT algorithms.

Unfortunately, it is not easy to do. Indeed, if we take fairly
related graph problems, such as Independent Set' or Vertex
Cover?, the approach used here will not work directly.

In fact, the C¥, class seems suited to problems such as
Clique due to the definition of the class. Indeed, by con-
structing a solution as seen in the MaxClig-CkW algo-
rithm, every solution to the problem has a first vertex x; such
that a solution is a set of vertices that belongs to N, that is
in the neighborhood of this first vertex. And consequently,
a global solution is defined in adding x; to a maximum size
clique of G[N], this subgraph being tractable since it sat-
isfies the right properties. Thus, the existence of a solution
is intrinsically linked to the construction of the graph class,
which is based on the vertex neighborhood.

On the other hand, if we consider the Independent Set
problem, every solution is made up of vertices that are pre-
cisely absent from the neighborhood of a first vertex z;.
So, treatment using a similar approach to that based on C{fV

!Given a graph G and an integer k, does G have a subgraph of
k or more vertices that has no edges

’Given a graph G and an integer k, does G' have a subset of k
or fewer vertices such that every edge has at least one vertex in that
subset

classes would consist in defining this type of class differ-
ently, by considering not the neighborhood of vertices, but
the vertices that are not in the neighborhood. But what is
possible for a problem like Independent Set is not necessar-
ily so for other problems. For example, if we take Vertex
Cover, then we need to be sure not only of the nature of the
considered o ordering, but also of the way in which solu-
tions can be constructed. For a given vertex x;, which ver-
tices should be related to x; to ensure that a partial solution
in this set of vertices can be extended by adding z;? While
in the case of the Clique problem, this is obvious when con-
sidering the neighborhood of x;, in the case of Vertex Cover,
the question remains completely open at this stage.

One possible approach is based on the notion of polyno-
mial transformation, transforming any problem to the Clique
problem. However, such an approach would only be possible
under the assumption that the structural properties related to
the treewidth of the graph are preserved. In another context,
this possibility was explored using the notion of ”guarded re-
ductions”, which are reductions defined by first-order logic
formulas showing that guarded reductions preserve bounded
treewidth (Mitchell 2019).

Acknowledgements

The author would like to thank Cyril Terrioux for his criti-
cal reading of this paper. This work has been funded by the
French Agence Nationale de la Recherche, reference Mas-
sal’IA ANR-19-CHIA-0013-01.

References

Arnborg, S. 1985. Efficient Algorithms for Combinatorial
Problems with Bounded Decomposability - A Survey. BIT,
25(1): 1-23.

Arnborg, S.; Corneil, D.; and Proskuroswki, A. 1987. Com-
plexity of finding embeddings in a k-tree. SIAM Journal of
Discrete Mathematics, 8: 277-284.

Bodlaender, H. L. 1996. A Linear-Time Algorithm for Find-
ing Tree-Decompositions of Small Treewidth. SIAM J. Com-
put., 25(6): 1305-1317.

Courcelle, B. 1990. The monadic second-order logic of
graphs. I. Recognizable sets of finite graph. Information and
Computation, 85 (1): 12-75.

Downey, R. G.; and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
Jégou, P. 1993. Decomposition of Domains Based on the
Micro-Structure of Finite Constraint Satisfaction Problems.
In AAAI, 731-736.

Johnson, D.; and Trick, M. 1996. Cliques, Coloring, and
Satisfiability: Second DIMACS Implementation Challenge.
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. vol 26. AMS.

Mitchell, D. 2019. Guarded Constraint Models Define
Treewidth Preserving Reductions. In Principles and Prac-
tice of Constraint Programming - Stamford - USA, volume
11802 of LNCS, 350-365.

Robertson, N.; and Seymour, P. 1986. Graph minors II: Al-
gorithmic aspects of treewidth. Algorithms, 7: 309-322.

