
Trick Costs for αµ and New Relatives

Samuel Bounan1, Stefan Edelkamp2

1 École normale supérieure de Lyon, Auvergne-Rhône-Alpes, France
2 Computer Science Department, Faculty of Electrical Engineering, Czech Technical University in Prague

samuel.bounan@ens-lyon.fr, edelkste@fel.cvut.cz

Abstract

In this paper we present a player for incomplete information
card games with tricks scored by points or eyes. We factorize
existing algorithms into a template that captures the main in-
gredients of such game trees. We then analyze three different
algorithms, and the impact of the information given during
the algorithm on the decisions it makes. We extend these al-
gorithms to work with cost instead of winning vectors, and il-
lustrate their effectiveness in finding good cards. We develop
a new algorithm that tries to respect known information.

Introduction
Many perfect-information board games such as Check-
ers [24], Oware [2], Connect4 [1], Awari [23], and Nine-
Men-Morris [14] have been solved, or, as in Chess, Shogi or
Go, computer AIs clearly outperform humans [27]. There-
fore, research attention has shifted to incomplete infor-
mation games. The partially observable board game Strat-
ego has recently been analyzed with DeepNash, a model-
free multiagent reinforcement learning algorithm [22]. It
achieved an all-time top-3 rank on the Gravon games plat-
form, competing with human expert players.

Card games remain an objective of research for deci-
sion making with imperfect information. After some vari-
ants of Poker have been solved or played to a satisfying
degree [3, 21], trick-taking games such as Skat [5, 17],
Hearts [29] and Bridge [6, 13, 18] have been identified as
current AI challenges. One obstacle is that, given the large
number of tricks and degree of uncertainty, a direct applica-
tion of reinforcement learning as in Go [26] is less obvious.

Most recently, some card game AIs are beginning to chal-
lenge human supremacy. Notably world-class caliber play
in Bridge [7, 6], Spades [8], and Skat [10, 11]. In these
cutting-edge players, domain-dependent information is pro-
vided, such as winning probabilities extracted from human
expert games [9]. We have implemented an efficient frame-
work for general card games. General game playing has a
long tradition: there have been several insightful interna-
tional competitions using GDL or GDL-II (for incomplete
information) [25] as the input language. While the players
achieved a remarkable playing strength [12], the generation

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of moves is slow. Even faster frameworks like Google Deep-
Mind’s OpenSpiel are less efficient for card games than our
framework with its concise card encodings.

Another problem is that for multi-player teams most gen-
eral game playing algorithms are not yet competitive. We
focus on trick-taking stage of card games. While we have
implemented bidding and dog putting strategies for all the
card games, they are not the subject of this work, as they are
often based on domain-dependent conventions.

The paper is organized as follows. First we will define the
building blocks for the formalization of the problem. Our
notation is not taken from any specific work, but helps to
design a naive algorithm. Section refers to the construc-
tion of the driver template algorithm. Then, we discuss the
efficiency of three algorithms. The first one, called Perfect
Information Monte-Carlo, PIMC, is well-known [15]. The
second one, αµ is newer [7] and shown effective in Bridge.
The third one is a new. In all three, we present the algo-
rithm principles in a template algorithm thus adapt them to
our model. Also, αµ was only used with Boolean score vec-
tors and with two players. We extend it to scores in R and
to several players. Finally, we present some results we ob-
tained in our implementation. Our code generalizes ideas
from [10] to implement, while in a restricted setting with
simplified bidding. The contribution of this paper are as fol-
lows. We provide an efficient framework. calculate the effect
of truncating tree search with subsequent random playouts.
quantify the information gain of αµ wrt PIMC. successfully
apply αµ algorithm to support more players in a team and
to general trick costs; propose a novel general incomplete-
information algorithm as a compromise of different nodes in
the backup.

Preliminaries
The set of cards C is dealt to p players at the beginning of
the game. A world is any possible deal of the cards among
the players,W the set of worlds, and for a world w ∈ W , wi

denotes the hand of player i, i ∈ {1, . . . , p}. Worlds change
during a game. We call state the history of cards already
played, and S the set of possible states.

In a state s, the next player to play a card is determined by
a function turn(s) ∈ {1, . . . p} and the set of legal cards that
can be played in s with a hand wi by legal(wi, s) ⊆ C. In
some states the game ends, this is determined by a Boolean

function over(s), and in these cases each player receives an
amount of points given by a function score(i, s) ∈ R. The
goal of each player is to maximize its final score, and we
assume rationality of everyone and common knowledge of
rationality. In general in a state s ∈ S the world is neither
perfectly known nor completely unknown and with a hand
wi player i ∈ {0, . . . , p} assumes a particular distribution
on the set of worlds Di,wi,s.

To construct an artificial player, we (only) need to know
in a state s, in a position i and with a hand h, what is the
best card to play. In extension to articles that formalize tree
searches, as in [4], [20] we chose the following definition.

If we define σ(i, h, s) ∈ R as the best score that can be
obtained, with argσ to denote a probabilistic function that re-
turns a card corresponding to the maximum score, uniformly
chosen in U among cards that satisfy this property, we have
σ(i, h, s) = maxc∈legal(h,s)Ew↪→D(i,h,s)Ef↪→U(F)score(i, f)

whereF is the set of possible optimal final states. With s1 =
s and sk+1 = sk ∪ argσ(turn(sk), wturn(sk) \ sk, sk) for
k > 1 we have
F = {f ∈ S | ∃k ∈ N P[sk = f] ̸= 0 and over(f)}.
Every object can be easily derived from the rules, except

the knowledge distribution Di,h,s. We will construct O the
set of possible worlds with a non-zero probability for D.

Let w be a world in W with state s and hand h. We
have the following constraints on w: a) wi = h; and b)
in every state before s, the players played optimally (be-
cause of rationality). Let n be chosen, so that s is an n-
tuple. Let sk be the card played in s at step k < n. From
the second constraint, we know that in the state s|k =
(s1, . . . sk) player turn(s|k) played a card sk+1 so that
P[sk = argσ(turn(s|k), wturn(s|k) \ s|k, s|k)] ̸= 0. We have

O = {w ∈ W;wi = h and ∀k ∈ [n]

P[sk+1 = argσ(turn(s|k), ws|k \ s|k, s|k] ̸= 0.}
Because no additional knowledge can be used to infer a
probability among this set of possible worlds O we have
Di,h,s = U(O). There are two problems with this defini-
tion of D. First, in practice players may differ from the per-
fect rationality, and restricting O to the worlds where every-
one played optimally can quickly become a strong bad bias.
Second, computing O is computationally costly (it needs to
compute σ several times). To simplify Di,h,s we assume it
follows an uniform distribution over the set of legal worlds
P , that can be computed in constant time as Di,h,s = U(P)
with w ∈ P iff wi = h and for all k < n we have
sk+1 ∈ legal(wturn(s|k), s|k).

From a card played by a player i, as player j can often de-
rive a set of cards that player i does not have (initially, player
j’s hand, maybe enlarged by certainties through the bidding
process). We can represent the knowledge of a player j with
sets ¬Kj

i corresponding to the cards that player j knows that
player i must not have. This ease the exploration and the
search tree can be pruned based on the knowledge. When a
card c has been played by player i, we can update ¬Kj

i effi-
ciently with Algorithm 1. With this reduction of D we study
the general structure of the algorithm we want to design.

Algorithm 1: update(¬Kj
i , c, s)

for c′ ∈ C \ ¬Kj
i do

if c /∈ legal({c, c′}, s) then
¬Kj

i ← ¬K
j
i ∪ {c′}

Figure 1: Depth-1 minimax tree.

Max

Min

s∗ sa

Min

sb sc

Minimax Truncated with Random Playouts
Most algorithms include a fast open-card solver to compute
the game value. There are different approaches but they all
use the minimax search tree as their basis. Note that due to
the tricks taken and the teams the max or min modes may
not alternate on each path. Finding the optimal result of a
minimax tree can be computationally expensive, so an intu-
itive idea is to limit its depth by estimating the score of a
node at the maximal depth by random playouts of the end of
the game. In our case, the tree is not that deep, and we have
more information on the knowledge of the players, starting
with the knowledge that each leaf of the tree is at a con-
stant depth. It is, therefore, possible to obtain a bound on the
error made by approximating the optimal score with these
playouts, in particular by taking the average of the score ob-
tained by a number of random playouts.

Suppose we have a perfect alternating minimax tree T .
Given the outcomes at each leaf of T , we know that some
of them cannot be the optimal minimax score. Let s∗ denote
the optimal score. In Figure 1, we know that sa ≥ s∗ be-
cause Min would otherwise play for sa. We also know that
one of sb and sc is lower than s∗ because Max chooses the
left subtree in the optimal strategy. So we know that if we
order the scores of the leaves s1 ≤ s2 ≤ s3 ≤ s4, we have
s∗ ∈ {s2, s3}. More generally, we can compute the num-
ber of playouts g (resp. l) that have a score higher (resp.
lower) than s∗. We will estimate the exact number of play-
outs greater and less than s∗ that are needed to be certain that
s∗ is optimal for the minimax strategy. Thus, our bounds on
the minimax score will be tight. Note that this is also the
minimum number of leaves that an algorithm needs to ex-
plore to compute s∗. We study alternating minimax trees.
For consistency, we denote by depth of a tree T the number
(Max,Min) nodes to a leaf. To estimate l and g we addition-
ally assume that the number of actions at a given depth d is
constant, so that ad denotes the number of possible actions
at the root of a tree of depth d for Max, and bd for Min.

First, we compute the number of playouts that have a
score greater than s∗. We note s(T), the optimal minimax
score of a tree T . We have s(Tinit) = s∗. To compute the
number of playouts with a score greater than s∗ we only
need the assumption that s(Tinit) ≥ s∗. Indeed, if we know
that s(T) ≥ s∗, it means that Max chooses a card a such
that for all possible choices b of Min, the score of the sub-

tree of T after playing a and b has a score greater than s∗.
Otherwise Min could choose an action that leads to a score
that is strictly lower than s∗. It follows that s(T) < s∗, a
contradion. Thus, we have ∃a ∀b s(Ta,b) ≥ s∗.

We use the assumptions s(Ta,b) ≥ s∗ to setup a recursion.
The terminal case is when T has one node, in which case we
have one playout that we know has a score greater than s∗.
With the above assertion we can deduce that the number of
playouts in a tree that have a score greater than s∗ depends
only on the number of actions Min that can made at each
node of the tree. Here, we have made the assumption that in
a tree with depth d, the number of possible actions for Min is
a fixed number bd. Thus the number of playouts that achieve
a score greater than s∗ only depends on the depth of the tree.
We can, therefore, define it as a sequence gd. The number gd
represents the number of playouts that have a score greater
than the optimal minimax score for a tree of depth d. Fol-
lowing what we established earlier, we have g0 = 1 and
gd = bd gd−1 for all d > 0. Finally, we get gd =

∏d
i=1 bi.

Symmetrically, we can compute the number of playouts that
achieve a score lower than s∗ as ld =

∏d
i=1 ai. Assuming T

is a perfect alternating minimax tree of depth d, the optimal
score can be achieved by a playout that is neither among the
ld− 1 lowest playout scores nor in the gd− 1 higher playout
scores. So the total number of playouts is ld gd.

For a bound on the actual score we need to model the
distribution of the playout scores. We assume that the num-
ber of points that can be won in Td is Sd (we assume here
that the minimum score that can be obtained is 0 but we
can easily adjust the result with Sd in smax(Td) − smin(Td)).
We will, therefore, model the distribution of score with a
binomial law of parameters n = Sd, p unknown. We ap-
proximate this law by N (µ, σ2) with µ = Sdp and σ =√
Sdp(1− p). In this setting we can compute bounds on

s∗ directly. In fact, a lower bound on s∗ is given by the
value of the ld/(ld gd) quantile, as we showed above. We
have Q(ld/(ld gd)) ≤ s∗ ≤ Q((ld gd − gd)/(ld gd)) with
Q being the quantile function of the normal distribution
Q(p) = µ+σ

√
2 f−1(2p−1) and f being shorthand for erf.

By estimating s∗ as the midpoint between the two quantiles
(µ in our model) we can estimate the error ϵd. For simplic-
ity we assume that gd = ld = nd ≥ 2 (symm. Min / Max).
Thus, we have ld/(ld gd) = 1/nd, so that the error isϵd =

Q
(
nd−1
nd

)
−Q

(
1
nd

)
2

=
σ
√
2
(
f−1(1− 2

nd
)− f−1(2

nd
− 1)

)
2

=
σ√
2

(
2 · f−1

(
1− 2

nd

))
(symmetry of f−1). We set

σ =
√
Sdp(p− 1) ≤

√
Sd

2 , so that ϵd ≤
√

Sd

2 f−1
(
1− 2

nd

)
.

If we approximate s∗ with the mean of the score obtained
by a number m of random playouts µ̂, we have, using the
Bienaymé-Tchebychev inequality for the normal approxi-
mation P (|µ̂ − µ| ≥ ϵm) ≤ σ2

mϵ2m
= Sd

4mϵ2m
. Adding the

estimation error, we know that by choosing m ≥ Sd

4δϵ2m
we

have P (|µ̂− s∗| ≥ ϵm + ϵd) ≤ δ.
For Belote we set nd = 2dd! and Sd = 10d. if we want a

Algorithm 2: naive

function search(i, h, s)
res← {s}
max← ⊥
for c ∈ legal(h, s) do

j ← turn((s, c))
score′ ← ⊥
for w ∈ P do

F ← search(j, wj , (s, c))
for x ∈ F do

score′+ = score(i, x)/|F × P |
if score > max then

res← {c}
max← score′

else if score′ = max then
res← res ∪ {c}

return res

function chooseCard(h, s)
for c ∈ legal(h, s) do

F ← search(id, h, s)
S[c]← µf∈F (score(id, f))

return argmaxS

20%-approximation of the score, valid with a 95% chance,
we can estimate the tree after the 5th trick, with m = 8.
If we want to have a 15%-approximation valid with a 95%
chance, we can cut after the 6th trick with m = 3.

Template Algorithm
Following σ(i, a, s) we design a first naive Algorithm 2 to
solve our problem, which branches on every maximum and
expectation of σ. The problem with this algorithm is its time
complexity. Let T (d) denote the time complexity of the al-
gorithm if d cards are still to be played before the game is
over. We have T (d) = |legal(h, s)| · |P | · T (d − 1). If we
assume (for the sake of clarity) the number of legal cards
to be fixed during the game, and that the number of pos-
sible worlds to be constant, we have T (d) = Kd, where
K is a constant. Because of this time complexity the naive
algorithm is not practical. The common methods to solve
this problem use the same set of worlds for all nodes in the
search tree. This was not the case in our naive algorithm,
where each node branches to its possible set of worlds P .
Let us assume a set of worlds W for whole tree. We will
give each node a value representing the optimal scores in
state s for the worlds in W . The type of value depends on
the specification of the algorithm, it will be some kind of ar-
ray indexed by w ∈ W with the optimal scores of each w.
It should contain the scores of each player, as it will be the
only value passed through the tree.

With this tree, it is often easy to cut some unused nodes
using deep pruning, as in the αβ pruning algorithm. This
pruning is essential in the minimax tree. As shown in [16]
we can hope to reach a complexity close to Kd/2. This is
adapted to two player minimax games, with perfect informa-

Algorithm 3: tree

function tree(s, α, W , parent)
parent[myteam]← myid
r ← initmyid(s,W)
for c ∈

⋃
w∈W legal(s, wmyid) do

α[myteam]← maxmyid(r, α[myteam])
if ∃t ̸= myteam : α[t] <parent[t] r then

return ⊥t

Wc ← {w ∈W | c ∈ legal(s, wmyid)}
v ← tree(α, (s, c),Wc, parent)
if v = ⊥t then

if t ̸= team then
return ⊥t

else
r ← maxmyid(r, v)

return r

function chooseCard(s, h)
W ← genWorlds()
for every team t do

parent[t]← ∅
α[t]← ⊥t

return arg criterionc∈legal(s,h)(tree((s, c), α,W, parent))

tion. It has been extended to other frameworks, for example
with [19] to partially ordered values with a cache. We will
propose here a new generalization, not very sophisticated,
but flexible to different specifications.

Imperfect Information Tree Search
Algorithm 3 captures the structure of a MiniMax tree search
algorithm with vector α and set of worlds W . We have

• <i partial order on the pruning preferences of player i;
• initi(s,W), initialize the result for a player i, which has

to be a lower bound on the actual value (depending on
the worlds in W) of the node s for <i

• maxi calculates the return value based on the values of
the children. It is actually a fusion of the values of the
children rather than a maximum over <i.

• genWorlds() generates the worlds over which to compute
the values, uses the distribution D of the players.

• criterioni a total order representing the preferences of
player i for the final choice of the card to play

The complexity of this algorithm is hard to study, the
partial order causing pruning is difficult to approach and it
makes the model deviating from the ones developed in [16].
In practice, however, we can see a significant improvement
of time complexity with this pruning. Now that we have a
generic algorithm for solving the problem, with an a priori
reasonable time complexity, we will compare different spec-
ifications of this algorithm.

We will explore different specifications of the template we
presented. Each one is specified for two teams. The score of
a final state is the score made by the Max (declarer) team. We

tried to adapt it to multiple teams following the work of [28],
but it is a long time work. This could probably be done in a
future work. The first one is a direct extension of the usual
αβ pruning algorithm for perfect information games. The
second one is the one proposed in [7]. The last one is a novel
contribution. In each case we will present the specifications
of the functions we have previously invoked. We will not
describe the function initi in detail, because we only found
a trivial lower bound over the value of a node, based on the
score already made by a team in our trick-taking card games.

Perfect-Information Monte Carlo The idea of the
Perfect-Information Monte Carlo (PIMC) algorithm is to
generate random worlds according to D, and then to com-
pute a score in each world as if it were in perfect informa-
tion using the αβ algorithm. The generation of the worlds
follows directly from D. We generate a set of N worlds.
Over the worlds in W , the value of a node is the score of
each world in this setting of perfect information for every-
one: RN . This hypothesis of perfect information in these
worlds is not consistent with the settings. To illustrate it,
this algorithm fits a game where everyone shows their hand,
and plays openly after one card is played. Thus the genera-
tion of the worlds tries to capture the initial unknown, and
then in each world, we play with perfect information. Let us
talk about pruning. For the Max team a value a is greater
than b if the score of each world w ∈ W is greater in a
than in b: ∀k ∈ [N]ak ≥ bk It is symmetric for Min nodes:
∀k ∈ [N]ak ≤ bk In this framework, we can derive the
other function. The function maxi(a, b) returns the maxi-
mum/minimum, according to the team of i, of each score of
W . In fact with perfect information the players can choose
the ”objective” best card in each world. To make the final
choice for the card to play, we set the criterion to prefer the
best mean of the score, according to the team. The details
are presented in Algorithm 4 (left).

αµ Algorithm The problem with PIMC is that it assumes
perfect information for everyone. It leads to several im-
perfections and difficulties in decision-making as shown in
[13]. An example of a situation where PIMC fails is shown
in Fig. 2 (left). South’s expected score over these two tricks
is 0.5. In fact, South has a 50% chance of discarding the use-
less ace on the ♣A and keeping the useful ace. In this case
South scores 1, otherwise 0. However PIMC would generate
several worlds, some with North having the ♠2, some with
North having the ♡2, and in each one South would score 1.
In fact, if South knows the North’s remaining card (this is
the case in the PIMC algorithm, where perfect information
is given), it is easy to keep the right ace, and to win the last
trick. Thus PIMC would average the score over the world
sample and predict score 1 for South, which is a mistake.

The idea with the αµ algorithm presented in [7] is to in-
clude the imperfect information of the player who has to
choose a card in the reasoning. The player at the root of the
tree doesn’t know which world is the good one, but the oth-
ers do and play with perfect information. The algorithm fits
a game where one player has to play a card, but everyone
else sees his/her hand. Although it is not perfect in terms of
the information given, it is an improvement over PIMC.

Algorithm 4: PIMC (left) and αµ (right)

function genWorlds
W ← ∅
for k ∈ [N] do

w ↪→ D
W ←W ∪ {w}

return W

function maxi(a, b)
for k ∈ [N] do

if Max team then
rk ← max(ai, bi)

else
rk ← min(ai, bi)

return r

function criterioni(a, b)
sa ←

∑n
k=1 ak

sb ←
∑n

k=1 bk
if Max team then

return sa > sb
else

return sa < sb

function maxi(X , Y)
R← ∅
if root then

R← X ∪ Y
else

for (x, y) ∈ X × Y do
r ∈ RN

for k ∈ [N] do
if Max team then
rk ← max(xi, yi)

else
rk ← min(xi, yi)

R← R ∪ {r}
for r1 ̸= r2 ∈ R do

if ∀k ∈ [N]r1k ≤ r2k then
if root is Max then

remove r1 from R
else

remove r2 from R

return R

function criterioni(X , Y)
if Max team then
sX ← maxx∈X

∑n
k=1 xk

sY ← maxy∈Y

∑n
k=1 yk

return sX > sY
else
sX ← maxx∈X

∑n
k=1 xk

sY ← maxy∈Y

∑n
k=1 yk

return sX < sY

We study it using information theory. Suppose C cards
are remaining and player i knows the location of |C| − k of
those C cards, k being unknown. We will model D as the
uniform distribution on the unknown cards over all players.
These unknown cards can be dealt pk different times. Thus,
for w ∈ W we have D(w) = 1/pk (with p the number of
players) if w matches the known cards, and 0, otherwise.

Knowing that we are playing in a world w∗ (which is
coherent with the known cards of i) gives the information
− log(D(w∗)) = k log p. Note that this is also the KL-
divergence between the certain distribution where w∗ has a
probability of 1 and D. We next measure the total informa-
tion I(n) given to the players when n cards are to be played.
Consider that n cards are unknown at this state, and all the
other C − n cards are known. For a solution given by PIMC
we compute the information gain contained in this solution.
In Formula () every call of σ adds some information to this
gain: the perfect information given to the node of the state.
We have

Ipimc(n) = n log p+

n−1∑
k=0

I(k) = n log p+

n−1∑
k=0

(n− k)k log p

= log p(n+ n(n2 − 1)/6) ≥ log p(n3/6)

Now consider a solution of αµ. Perfect information is

♣ A
2♠|2♡

N

S

♠ A
♡ A

♠ A
♡ A

N

S

♣ A
♠ (2)

Figure 2: In this game we follow the rules of Bridge except
we only play with two enemy players. Trump is clubs. (left)
North plays ♣A and South is to play. South does not know
if the second card of North is ♠2 or ♡2, it is a 50% − 50%
situation. (right) Trump is clubs. North does not know if the
second card of South is ♠2 or ♡2. South has to play.

only given to the non-root player. So, assuming we start with
the root. we have

Iαµ(n) = 0 +

n−1∑
k=0

(n− k)δpdepth=k,root(k log p)

= log p

(n∑
k=0

(n− k)k −
n/p∑
i=0

(n− ip)ip

)

= log p

(
n(n2 − 1)

6
− p2

n
p ((

n
p)

2 − 1)

6

)
= log p

(
n3

6

)(
1− 1

p
+

p− 1

n2

)
.

Since the expression p−1
n2 is small when we are not at the

end of the game (in Bridge in middle game with 7 tricks
left, we have p = 4, n = 4 · 7), the information saved with
αµ is about a factor (1 − 1/p). We noticed that with αµ
we achieve a reduction of the information gain by a factor
(1− 1/p). This is not surprising, since we have removed the
information gift of one player.

Let us introduce the functions used in αµ. This algorithm
solves the problem of Fig. 2 (left). In Fig. 3 we see that the
uncertainty about the outcome of the game is preserved. The
value computed, [(0, 1), (1, 0)] represents the fact that one
strategy leads to a nonzero score in one world, and another
strategy leads to a nonzero score in the other world.

In αµ generateWorlds is the same as in PIMC; maxroot

computes the union of the values of the children, and re-
moves the elements that are dominated (i.e., if the scores
associated with one strategy are all better than another, it re-
moves the latter); maxi is the union of the product of the
strategies of the children. One element is computed by tak-
ing an element from all the children (we construct one pos-
sible strategy for root), and by taking in each world the best
score for i, as in PIMC (if root follows the constructed strat-
egy, then the score would be the one computed, with perfect
information of i). Again, the set is simplified by removing
the dominated elements for root; criterion selects the node

Figure 3: Application of Fusion algorithm to the problem
raised in Fig. 2 (left). The scores are the ones of South,
viewed as a Max node. Max nodes are circled by continu-
ous line, and Min nodes by dashed lines. Here world 1 is the
world where North has ♠2 (the real world), and world 2 is
the one where she has ♡2 (the fake world but South doesn’t
know it).

[(0, 1), (1, 0)]

♠A : [(0, 1)]

♠2 : [(0,⊥)]

♡A : [(0,⊥)]

♡2 : [(⊥, 1)]

♡A : [(⊥, 1)]

♡A : [(1, 0)]

♠2 : [(1,⊥)]

♠A : [(1,⊥)]

♡2 : [(⊥, 0)]

♠A : [(⊥, 0)]

containing the strategy with the best expected score over the
different worlds in W .

Fusion Algorithm
Even with αµ we are giving away too much information to
the players other than root. This can lead to bugs like the one
shown in Fig. 2 (right). If South plays ♠2, s/he will score
1. If s/he plays ♣A s/he has 50% chance of scoring 2 and
50% chance of scoring 1. So ♣A is the better choice. αµ
supposes perfect information of North. Thus if South plays
♣A she will score 1, and if s/he plays♠2 s/he will also score
1. Both cards are equal, and αµ could make the mistake of
choosing ♠2.

To solve this problem, we need to incorporate the imper-
fect information of all the players into our algorithm. This is
the goal of the fusion algorithm. We choose to fix the value
of a node to be the expected score of each world if every-
one plays optimally according to their knowledge. At a node
with two children, player i will choose the value of the child
that has the best expectation, according to his/her team, over
the worlds that are possible according to his/her knowledge.
If the two children have the same expected value, player i
has 50% chance of playing each one or them. So the value
of the node should be a mixture of both (the middle of the
score segment).

For example, if a Max node has two children [2, 5, 3]
and [3, 7, 0], its value would be [2.5, 6, 1.5] The problem
with this simple idea is that different players have differ-
ent knowledge, and different possible worlds. So each set of
possible worlds P is different for each player. Moreover for
a player, his/her set of possible worlds depends on its hand,
that is unknown. We can’t take one set W for the whole tree
and assume it represents all the players, as we did before.

We compute the values over subsets of W that correspond
to the different P possible for a player. For example, if both
Max and Min can have two hands, there are four possible

Figure 4: Fusion of two values by a Max node. The row
correspond to the different hands possible for Min, and the
columns the one for Max (mij represents the score of the
world where Min has hand i and Max hand j).

[
8 2.5 4
3 1.5 8
4 4 5

]
[
8 2 6
3 0 5
4 6 2

] [
1 3 4
4 3 8
3 2 5

]

worlds {Max1Min1,Max1Min2,Max2Min1,Max2Min2}.
Suppose Max is the root, and you want to merge two values
at a Min node: [0, 2, 3, 1] and [2, 0, 2, 3]. If Min has hand
1, the worlds she will consider are the first and third (you
do not know the hand of Max. So the first value is better
because it has an expected score of 1.5 instead of 2. But
if Min has hand 2 the two values have the same expected
score over worlds 2 and 4, which is 1.5. Thus Min has a
50% chance of playing each value and we mix the scores of
these worlds. We come up with the value [0, 1, 3, 2]. A more
detailed example is shown in Fig. 4. This algorithm solves
the issue raised in Fig 2 as shown in Fig. 5. At the root,
South has the choice of two values, over the actual world
1.5 and 1. Because 1.5 > 1 s/he will then play ♣A.

In practice, taking any set W won’t work to have this sys-
tem of subsets of possible worlds. To have a correct number
of worlds for each hand of each player, we need to have
similarities between the worlds of W . To do this, we use a
small set of initial worlds and we create the set W by tak-
ing all the possible permutations of the hands with this ini-
tial set. So in Alg. 5 generateWorlds samples some worlds
and then returns all the permutations of those worlds. maxi

follows the scheme explained before. criterioni selects the
value with the best average score over the possible worlds
of i. We prune if all the scores of one value are worse than
another one.

Algorithm 5: Fusion

function maxi(a, b)
for h possible hand of i do

scorea ←
∑

w∈Ph
aw

scoreb ←
∑

w∈Ph
bw

if scorea < scoreb then
for w ∈ Ph do

if Max team then rw ← bw else rw ← aw
else

for w ∈ Ph do
if Max team then rk ← aw else rk ← bw

return r

Figure 5: Application of the Fusion algorithm to the problem
raised in Fig. 2 (right). The scores are the ones of South,
viewed as a Max node. Here world 1 is the world where
South has ♠2 (the real world), and world 2 is the one where
she has ♡2 (the fake world but North doesn’t know it).

(1.5, 1.5)

♣A : (1.5, 1.5)

♠A : (2, 1)

♠2

♡A

(2,⊥)

♡2

♡A

(⊥, 1)

♡A : (1, 2)

♠2

♠A

(1,⊥)

♡2

♠A

(⊥, 2)

♠2 : (1,⊥)

♠A : (1,⊥)

♡A

♣A

(1,⊥)

Implementation
For the implementation, we have adapted the above formal-
ization to the code. This allows us to keep some flexibility in
the rules used later. We put the organization of the card game
into one file. This file is for the general game, and when rule-
dependent functions are needed, we call them in the specific
rule file associated with them.

A simple modification in the Makefile selects which game
is played and which rule file is read when these rule-
dependent functions are used. It uses a game class that stores
the information about the game being played: the contract,
the cards already played, who has to play, the scores of the
teams, what the current trick consists of, and who is the
leader of that trick. We have a player class, which contains
the information that a player has (his hand, what he knows
about the other hands, etc). The communication with the
player is realized in the methods of this class. The selection
of the card to play is implemented by a function pointer,
which is an attribute of the player class. Several functions
have been created to select a card. We define this attribute of
the player class to define its strategy.

We have collected all these different strategies in a direc-
tory. These are mainly the strategies described above. Since
they often follow the same pattern, as we have explained,
we used the algorithm of Figure 3. We then used an ab-
stract class for each tree strategy. This abstract class is then
specified into precise classes corresponding to each strategy
that follows the template. In each class, the specification-
dependent functions, such as maxi, are implemented as at-
tributes. To invoke the function that selects a card, we call

the template with the class of the selected specification.
To encode the knowledge, the player class has an attribute

have not, which is an array containing the cards that this
player knows that the other players do not have. This knowl-
edge is used to generate the worlds used in the strategy func-
tions, so that the generated worlds respect what the player
knows about the others.

As for the basic types, we used bit vectors (mainly a set
of unsigned integers) to represent the set of cards. For ex-
ample, in Belote with its 32 cards, we used one unsigned
integer. If a bit in a representing vector is set to true, then the
corresponding card in the deck is contained in the set.

You can start the games by choosing which hands are
played, which strategies are used by each player, and how
many games are played. We ran several experiments with
this structure.

Experiments
We tested the approach in two different games: Belote and
Bridge. While Bridge is well-studied, our core interest is
in (La) Belote, a French national card game for four play-
ers. For the player’s strategy we implemented the three al-
gorithms we discussed and a random card strategy, to have
some kind of naive player. We then compared pairs of al-
gorithms. In both cases there are two teams, so we assigned
one strategy to one team and the other to the second team.
We played matches of 100 different deal (same across the
different experiments). With each deal, we play once as it is,
and then swap the team’s positions, so that it is fair. We mea-
sure the score made by the team of the first player to play.
In each experiment we finally collect the 200 scores across
these games. We add the 100 scores made by one strategy,
and the 100 scores made by the other, and deduce the per-
centage of the total amount of points per game that on strat-
egy wins over the other.

In each algorithm there are some hyperparameters to
fix: nsample is the number of worlds used in the algorithm.
depth-leaf in αµ and the fusion algorithm is the depth at
which we stopped the specification to end the tree with
PIMC (this is done for complexity issues, it is also done in
[7]. depth-rd is the depth at which pimc is stopped to end the
tree with the an average of the random playouts.

For Belote, we derived a 10% approximation of the score,
that was valid with 95% probability with these random play-
outs. For Bridge, we imposed a low value of depth-rd for
matters of complexity, and the bounds on the approximation
made were not consistent. We tried to keep the same hyper-
parameters for all the algorithms, but Fusion needed more
worlds than the others. All algorithms are better than ran-
dom. We can also see that the αµ algorithm is slightly better
than the others. Let us note that all these algorithms are de-
signed to play against smart players so the differences of
the scores against random are not significant (PIMC being
better than αµ in beating random in Bridge is not relevant).
Fusion algorithm is slightly worse than the others. However,
pruning in the Fusion algorithm needs to be improved.

In Belote vs. another AI PIMC (nsample = 10, depth-rd =
25) we found a 9.7% gain in the max. score on average.

rd pimc αµ fusion

-1.8 -19.3 -22.1 -18.5

rd pimc αµ fusion

19.3 -3.3 -0.2 1.5

rd pimc αµ fusion

22.1 0.2 2.4 0.8

rd pimc αµ fusion

18.5 -1.5 -0.8 3.5

rd pimc αµ fusion

rd

pimc

αµ

fusion

Figure 6: Belote; team 0 in rows, team 1 in columns. Pimc:
nsample = 10. αµ: nsample = 10, depth-leaf = 5, depth-rd =
20. Fusion: nsample = 24, depth-leaf = 5, depth-rd = 20.

rd pimc αµ fusion

1.5 -25.2 -21.8 -21.6

rd pimc αµ fusion

25.2 -0.7 -1.8 5.0

rd pimc αµ fusion

21.8 1.8 -2.1 2.7

rd pimc αµ fusion

21.6 -5.0 -2.7 0.5

rd pimc αµ fusion

rd

pimc

αµ

fusion

Figure 7: Bridge; team 0 in rows, team 1 in columns. Pimc:
nsample = 10. αµ: nsample, depth-leaf = 5, depth-rd = 9,
Fusion: nsample = 24, depth-leaf = 5, depth-rd = 20.

Conclusion
We presented an efficient framework for imperfect informa-
tion card games and found a factorization of the search in a
template that captures the main ingredients of the search. We
then analyzed three different algorithms and derived the im-
pact of the information given during the algorithm on the de-
cisions it makes. Finally, we designed a new algorithm that
tries to respect known information more. We also estimated
the effects of truncating the search tree with random roll-
outs, and the information gain obtained by αµ. To continue
this work, we need to explore more deeply the possibilities
for a better pruning of the tree. Last, but not least we will
aim at card games with talon that do not yet fit the setting.

Acknowledgments
This research was partly funded by AFOSR project Flexi-
ble and Resilient Auton. Systems (FRAS) and by the Czech
Science Foundation, grant number 22-30043S.

References
[1] L. V. Allis. A knowledge-based approach to connect-

four. the game is solved: White wins. Master’s thesis,
Vrije Univeriteit, The Netherlands, 1998.

[2] X. Blanvillain. Oware is strongly solved. In Computers
and Games. Springer, 2022.

[3] M. Bowling, N. Burch, M. Johanson, and O. Tam-
melin. Heads-up limit hold’em poker is solved. Com-
mun. ACM, 60(11):81–88, 2017.

[4] A. Brennan, S. Kharroubi, A. O’Hagan, and J. Chilcott.
Calculating Partial Expected Value of Perfect Informa-
tion via Monte Carlo Sampling Algorithms. Medical
Decision Making, 27(4):448–470, July 2007.

[5] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant.
Improving state evaluation, inference, and search in
trick-based card games. In IJCAI, pages 1407–1413,
2009.

[6] T. Cazenave and V. Ventos. The αµ search algorithm
for the game of bridge. CoRR, abs/1911.07960, 2019.

[7] T. Cazenave and V. Ventos. The αµ Search Algo-
rithm for the Game of Bridge. In Monte Carlo Search,
Communications in Computer and Information Sci-
ence, pages 1–16, Cham, 2021. Springer.

[8] G. Cohensius, R. Meir, N. Oved, and R. Stern. Bidding
in spades. In ECAI, pages 387–394, 2020.

[9] S. Edelkamp. Challenging Human Supremacy in
Skat. In Twelfth Annual Symposium on Combinatorial
Search, July 2019.

[10] S. Edelkamp. Knowledge-Based Paranoia Search. In
2021 IEEE Conference on Games (CoG), pages 1–8,
Aug. 2021. ISSN: 2325-4289.

[11] S. Edelkamp. Improving computer play in Skat with
hope cards. 2023. To appear.

[12] H. Finnsson. Cadia-player: A general game playing
agent. PhD thesis, 2007.

[13] I. Frank and D. Basin. Search in games with incom-
plete information: A case study using bridge card play.
Artificial Intelligence, 100(1-2):87–123, 1998.

[14] R. Gasser. Harnessing Computational Resources for
Efficient Exhaustive Search. PhD thesis, ETH Zürich,
1995.

[15] M. Ginsberg. Step toward an expert-level Bridge-
playing program. In IJCAI, pages 584–589, 1999.

[16] D. E. Knuth and R. W. Moore. An analysis of alpha-
beta pruning. Artificial Intelligence, 6(4):293–326,
Dec. 1975.

[17] S. Kupferschmid. Entwicklung eines Double-Dummy
Skat Solvers mit einer Anwendung für verdeckte Skat-
spiele. Master’s thesis, Albert-Ludwigs-Universität
Freiburg, 2003.

[18] J. Li, B. Zanuttini, T. Cazenave, and V. Ventos. Gener-
alisation of alpha-beta search for AND-OR graphs with
partially ordered values. In IJCAI, pages 4769–4775.
ijcai.org, 2022.

[19] J. Li, B. Zanuttini, T. Cazenave, and V. Ventos. Gener-
alisation of alpha-beta search for AND-OR graphs with
partially ordered values. Research Report, GREYC
CNRS UMR 6072, Universite de Caen, May 2022.

[20] J. R. Long, N. R. Sturtevant, M. Buro, and T. Fur-
tak. Understanding the success of perfect informa-
tion monte carlo sampling in game tree search. In
Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, 2010.

[21] M. Moravcı́k, M. Schmid, N. Burch, V. Lisý, D. Mor-
rill, N. Bard, T. Davis, K. Waugh, M. Johanson, and
M. H. Bowling. Deepstack: Expert-level artificial in-
telligence in no-limit poker. CoRR, abs/1701.01724,
2017.

[22] J. Perolat, B. D. Vylder, D. Hennes, E. Tarassov,
F. Strub, V. de Boer, P. Muller, J. T. Connor, N. Burch,
T. Anthony, S. McAleer, R. Elie, S. H. Cen, Z. Wang,
A. Gruslys, A. Malysheva, M. Khan, S. Ozair, F. Tim-
bers, T. Pohlen, T. Eccles, M. Rowland, M. Lanc-
tot, J.-B. Lespiau, B. Piot, S. Omidshafiei, E. Lock-
hart, L. Sifre, N. Beauguerlange, R. Munos, D. Silver,
S. Singh, D. Hassabis, and K. Tuyls. Mastering the
game of stratego with model-free multiagent reinforce-
ment learning. Science, 378(6623):990–996, dec 2022.

[23] J. W. Romein and H. E. Bal. Solving awari with paral-
lel retrograde analysis. Computer, 36(10):26–33, 2003.

[24] J. Schaeffer, Y. Björnsson, N. Burch, A. Kishimoto,
M. Müller, R. Lake, P. Lu, and S. Sutphen. Solving
checkers. In IJCAI, pages 292–297, 2005.

[25] S. Schiffel and M. Thielscher. Reasoning about general
games described in gdl-ii. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 846–851.
AAAI Press, 2011.

[26] D. Silver and A. H. et al. Mastering the game of Go
with deep neural networks and tree search. Nature,
529:484, 2016.

[27] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel, T. Lillicrap, K. Simonyan, and D. Hass-
abis. Mastering Chess and Shogi by self-play with a
general reinforcement learning algorithm. Technical
Report 1712.018, arxiv, 2017.

[28] N. R. Sturtevant and R. E. Korf. On pruning techniques
for multi-player games. AAAI/IAAI, 49:201–207, 2000.

[29] N. R. Sturtevant and A. M. White. Feature construction
for reinforcement learning in hearts. In Computers and
Games, pages 122–134. Springer, 2006.

