
A Model for Optimizing Recalculation Schedules to Minimize Regret

Bethany Austhof and Lev Reyzin
Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago
851 S. Morgan St. Chicago, IL, 60607

{bausth2,lreyzin}@uic.edu

Abstract

In this paper we analyze online problems from the perspec-
tive of when to switch solutions when the cost is of doing
so is high – we call such a solution change a “recalculation.”
We analyze this problem under the assumption we have algo-
rithms that achieve per-round regret (which can be otherwise
thought of as point-wise error, or other well-studied quanti-
ties) of the form O(1/tε) after seeing t data-points. We study
schedules with a constant number and an increasing number
of recalculations in the total number of datapoints, and we ex-
amine when achieving optimal cumulative regret is possible.

Introduction
In many online settings, one faces the problem on when to
recalculate a given solution based on new data. This phe-
nomenon occurs in various settings by different names: in
the bandit framework, “sticky” decisions prevent the learner
from switching arms without paying a cost (Dekel et al.
2014; Kash, Reyzin, and Yu 2022; Machado et al. 2018),
in the online clustering setting every time one switchs so-
lutions, one may need to pay for new centers (Bhattachar-
jee et al. 2023; Bhattacharjee and Moshkovitz 2021; Hess,
Moshkovitz, and Sabato 2021; Moshkovitz 2021), in facil-
ity location, adding a new facility adds cost (Fotakis 2008;
Meyerson 2001).

The specific details of different problems require the anal-
ysis of their respective structures and often have their own
involved solutions. Here, we attempt to take a broader view,
and we adopt the learning language of additive regret (in-
stead of “competitive ratios,” etc. from the streaming litera-
ture, though the results apply just as well there).

We assume we have a black-box algorithm A that pro-
duces an estimator with expected per-round regret of
Rt(x) ∈ [0, 1] on a new data-point x when given samples
St = {x1 . . . xt} and when point x is drawn from the same
distribution as x1, . . . xt, which we will generically refer to
as D. Given the assumption above, we will drop the argu-
ment from the function R. We also define R0 = 1, which
means that until samples are given to A, full regret is suf-
fered by its (lack of) solution.

We call giving samples {x1, . . . xt} to A a recalculation
at round t. We work in the setting where calls to A are expen-
sive and need to be traded off against the benefits to improv-
ing regret. A call to A involves recalculating, and possibly

committing to, a new solution to a given problem. For ex-
ample, in the case of facility location, it involves the costly
opening of new facilities (or the moving of old ones).

Hence, we are interested in understanding the optimal re-
calculation strategy as minimize cumulative regret for var-
ious budgets on calls to A. Given a strategy that recalcu-
lates at rounds C = {t1, t2, . . .}, where each ti represents
a sequential point drawn from the distribution, the expected
cumulative regret RT would be

RT =

T∑
i=1

max
t∈C s.t. t<i

Rt (1)

In this paper, we will consider per-round regret guarantees
of the form t−ε

Rt = O(1/tε), (2)

which is known to be the asymptotically optimal regret for
many problems in bandit and online learning in the stochas-
tic setting (Auer et al. 2002). Rephrasing this in our termi-
nology, we have that for the recalculation schedule C =
{1, . . . , T}, the expected cumulative regret for 0 ≤ ε < 1

RT =

T∑
t=1

Rt−1 = O

(
T∑

t=1

1

tε

)
= O(T 1−ε),

So even when recalculating at every round, a regret guaran-
tee smaller than O

(
T 1−ε

)
is not possible, and we therefore

call this rate optimal. This is the quantity we will compare
to while attempting to do many fewer recalculations.

To simplify notation further, we will henceforth use R
for expected regret. Therefore, all of our results will be on
bounding regret in expectation.

Before proceeding, we note that another interesting set-
ting ε = 1 for Rt = O(1/t), which is, for example, relevant
for problems of estimation of parameters to minimize mean
squared error (MSE), where the squared error of the empir-
ical average of t samples versus the true estimate scales as
σ2/t (DeGroot 1986). Here, we would have

RT = O

(
T∑

t=1

1

t

)
= O(log T ).



Warm up
We begin by analyzing the special case of Rt = 1/

√
t The

argument in the previous section shows that the optimum re-
gret in this situation is O(

√
T ). However, this was the setting

in which we recalculated every time we drew a point, which
in the online setting isn’t always practicable. Thus, inducing
a trade-off between the amount of times we recalculate and
the regret formed in our calculation.
Proposition 1. Let D be a probability distribution from
which T data points are sampled online and let Rt =
O(1/

√
t). Using one recalculation, one can achieve an ex-

pected regret of O(T 2/3).

Proof. We first begin by calculating the optimal expected
regret of calculating the algorithm just once. Let c be a con-
stant such that 0 ≤ c ≤ 1. We have that the expected regret
must be:

T c∑
t=1

R0 +

T∑
t=T c+1

RT c = O
(
T c + T 1−c/2

)
.

We note that this is just a simple optimization of the right
hand side, so we equate the exponents and get c = 2/3. This
recovers the well-known bound of ε-first, (ε-greedy, and
epoch-greedy) sampling (Langford and Zhang 2007; Sutton
and Barto 2018; Tran-Thanh et al. 2010).

Uniform recalculations
One naive idea is to create a sampling schedule that solves
our problem is to sample uniformly, so after observing a set
ℓ amount of points we sample again and continue in this
manner. However, we find this to at best require O(T ε) re-
calculations to get asymptotically optimum regret.
Lemma 2. Let D be a probability distribution from which
T data points are sampled online and let Rt = O(1/tε) for
0 ≤ ε < 1. If we recalculate uniformly after observing every
ℓ points (and therefore recalculate T/ℓ times), then we incur
an expected regret of O

(
ℓ+ T 1−ε

)
.

Proof. We calculate the expected regret for recalculating af-
ter every ℓ points, we carry out the calculation by using the
general formula for a uniform schedule.

T/ℓ∑
i=0

ℓ∑
t=1

Rℓi = ℓ+O

T/ℓ∑
i=1

ℓ∑
t=1

1

(iℓ)ε


= ℓ+O

T/ℓ∑
i=1

ℓ1−ε

iε


= O

(
ℓ+ T 1−ε

)
,

which completes the proof.

As the lemma above shows, a constant number of recal-
culations would imply linearly many recalculations between
rounds and therefore linear regret. Therefore, we need a
smarter recalculation strategy if we want to recalculate only

a constant number of times. This is presented in the follow-
ing section.

We see in the previous section that uniform recalculation
scheduling fails to guarantee small expected regret with a
small number of recalculations. So we pivot to non-uniform
schedules. Taking, first, a look at what we can do with a
constant number of recalculations.

Constant number of recalculations
We now consider the case when we are allowed a constant
number of recalculations, but they need not be uniformly
spaced.

Proposition 3. Let D be a probability distribution from
which T data points are sampled online and let Rt =
O(1/tε) for 0 ≤ ε ≤ 1. Using one recalculation, one can
achieve an expected cumulative regret of

RT = O
(
T 1/(1+ε)

)
.

Proof. Consider recalculating after T c rounds for c = 1
1+ε .

We suffer O
(
T 1/(1+ε)

)
cumulative regret on those rounds.

For the remaining T − T c ≤ T rounds, we suffer at most

O (T/T cε) =O
(
T 1−cε

)
=O

(
T 1−ε/(1+ε)

)
=O

(
T 1/(1+ε)

)
regret.

Proposition 4. Let D be a probability distribution from
which T data points are sampled online and let Rt =
O(1/tε) for 0 ≤ ε ≤ 1. Using two recalculations, one can
achieve an expected cumulative regret of

RT = O
(
T 1/(1+ε+ε2)

)
.

Proof. Consider recalculating after T c1 and T c2 for 0 ≤
c1 ≤ c2 ≤ 1. Extending the argument in Lemma 3, we incur
a total regret of RT ≤ T c1 +T c2−c1ε +T 1−c2ε. Equalizing
the three terms we get the equations

c1 = c2 − c1ε and c1 = 1− c2ε.

Solving the above yields c1 = 1
1+ε+ε2 and yields an ex-

pected cumulative regret of O(T c1).

Theorem 5. Let D be a probability distribution from which
T data points are sampled online and let Rt = O(1/tε)
for 0 ≤ ε < 1. Using n recalculations, one can achieve an
expected cumulative regret of

RT = O
(
nT

1−ε

1−εn+1

)
.

Proof. Generalizing from the above, we divide into n recal-
culations and bound RT ≤

∑n+1
i=1 T ci−ci−1ε setting c0 = 0

and cn+1 = 1.



We argue that solving for the system of equations leads to
the following recursive formula:

cj = cj+1

∑j−1
i=0 εi∑j
i=0 ε

i
.

We proceed inductively, we first see that c1 = c2 − εc1,
which gets us c1 = c2(1 + ε)−1, as desired. Moving on, we
assume this holds for cj−1 and solve for cj .

cj − εcj−1 = cj+1 − εcj

cj(1 + ε) = cj+1 + εcj−1

cj(1 + ε) = cj+1 + cjε

∑j−2
i=0 εi∑j−1
i=0 εi

cj

(
1 + ε−

∑j−1
i=1 εi∑j−1
i=0 εi

)
= cj+1

cj

(
1 + ε− 1 +

1∑j−1
i=0 εi

)
= cj+1

cj

∑j
i=0 ε

i∑j−1
i=0 εi

= cj+1

cj = cj+1

∑j−1
i=0 εi∑j
i=0 ε

i
.

So we have a recursive formula and now we can see that if
we terminate after n recalculations we have a telescoping
product, and we have that

c1 =
1∑n

i=0 ε
i
=

1− ε

1− εn+1
.

Since the n + 1 phases have equal regret, the total regret is

O(nT c
1 ), producing the bound of RT = O

(
nT

1−ε

1−εn+1

)
.

This bound tends to T ε for arbitrarily high constant n.

Schedules with increasing recalculations in T
After seeing some extreme examples and results on con-
stants, we wish to discover how to improve the amount of
times needed to recalculate while still maintaining the opti-
mum expected regret. By employing a “doubling trick” ar-
gument, we see that we can easily reduce to log(T ) recal-
culations. We note that other settings have also been stud-
ied that achieve optimal regret using logarithmically many
policy “switches,” e.g. Abbasi-Yadkori, Pál, and Szepesvári
(2011); Jaksch, Ortner, and Auer (2010).

Lemma 6. Let D be a probability distribution from which
T points are sampled online and let Rt = O(1/tε) for 0 ≤
ε < 1. There exists a sequence of log(T ) recalculations for
which we can achieve optimal expected regret of O(T 1−ε).

Proof. Let T = 2m, with m sufficiently large, and let
L = {20, 21, . . . 2m−1}. If we recalculate the algorithm after
seeing each point in L, then we have the following expected

cost:

m∑
i=0

2i∑
t=1

R ≤ O

 m∑
i=0

2i∑
t=1

(
1

2(i−1)ε

)
= O

(
m∑
i=0

(
2i−(i−1)ε

))

= O

(
m∑
i=0

(
2i(1−ε)

))
= O

(
2(1−ε)m

)
= O

(
T (1−ε)

)
.

This establishes that we can recalculate log(T ) times and
achieve optimal expected regret of T 1−ε.

We observe that if the regret is of the form Rt = O(1/t)
(the ε = 1 case), then the regret will be bounded by
O(log T ) in the above schedule.

We’ve established that we can achieve optimal expected
regret with only log(T ) recalculations, we go on to establish
that we can’t improve this to log log(T ), by showing that
the expected regret when taking log log(T ) recalculations is
O(log log(T )

√
T ).

Lemma 7. Let D be a probability distribution from which
T are sampled online and let Rt = O(1/tε) for 0 < ε <
1, where c = 1/ε. There exists a sequence of log log(T )
recalculations such that we can achieve an expected regret
of O(log log(T )T 1−ε).

Proof. Let T = cc
m

, with m sufficiently large. Let L =
{ℓ0, ℓ1, . . . ℓm}. We recalculate after seeing each point in L.

We wish to find a schedule that will cover all T with
log log(T ) recalculations. We do this with the following
schedule: at epoch i, once we have seen a total of T 1−c−i

points we recalculate. We show that if we cover half of T at
epoch log log(T ), then in the next epoch we will have seen
all of T . So we establish this recalculation schedule achieves
this. Let y be the amount of times needed to see half of T
under the above scheduling scheme, so:

1/c = T−c−y

− logc(c) = (−c−y) logc(T )

1

logc(T )
= c−y

y = logc logc(T ).

We note that we found the exact point at which we would
have half, and that this makes log log(T ) the minimum
amount of rounds needed to cover all of T with this par-
ticular schedule. We can be sure of this since there were no
assumptions made on the size of T , so we couldn’t reduce
to log log log(T ) rounds. So now, we can sum our per-round



cost over the amount of rounds we must run:

m∑
i=0

T 1−c−i∑
t=1

R
T 1−c−(i−1) ≤

m∑
i=1

T 1−c−i∑
t=1

T− ci−1−1

ci

=

m∑
i=1

T 1−c−i−c−1+c−i

= log log(T )T 1−c−1

= log log(T )T 1−ε.

Computing the inner sum, we see that at each round, we will
have O(T 1−ε) expected regret.

Now we establish a lower bound, in particular that we can-
not achieve an expected regret of O(T 1−ε) with log log(T )
recalculations.

Lemma 8. Any schedule that performs O(log log T ) recal-
culations using an algorithm that suffers per-round regret of
R = O(1/tϵ) must suffer ω(T 1−ϵ) cumulative regret.

Proof. Given log log(T ) recalculations we are lower-
bounded by a regret of O(T 1−ε). Specifically, we show that
we cannot achieve a regret of O(T 1−ε) given log log(T ) re-
calculations. So assume to the contrary, that there exists a
schedule that does this. Now, to achieve this clearly the re-
gret incurred at each recalculation has to be O(T 1−ε). Based
on this we craft an inductive argument on the size of each
recalculation round. At round i− 1, the size, T ci−1 must be
O(T 1−εi). As a base case, we see that T c0 = O(T 1−ε).
We move onto the inductive step: We note that the regret for
round i is

T ciT−εci−1 = O(T 1−ε)

T ci = O(T 1−ε+εci−1).

This implies,

ci ≤ 1− ε+ ε(1− εi−2)

ci ≤ 1− εi−1.

This, then results in the total portion of T witnessed as∑log log(T )
n=1 T 1−εn . Now, since

log log(T )∑
n=1

T 1−εn ≤ log log(T )T 1−εlog log(T )

= o(T ),

we have failed to witness all of T in log log(T ) rounds and
have reached a contradiction.
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