A Model for Optimizing Recalculation Schedules to Minimize Regret

Bethany Austhof and Lev Reyzin
Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
851 S. Morgan St. Chicago, IL, 60607
\{bausth2,lreyzin\}@uic.edu

Abstract

In this paper we analyze online problems from the perspective of when to switch solutions when the cost is of doing so is high - we call such a solution change a "recalculation." We analyze this problem under the assumption we have algorithms that achieve per-round regret (which can be otherwise thought of as point-wise error, or other well-studied quantities) of the form $O\left(1 / t^{\varepsilon}\right)$ after seeing t data-points. We study schedules with a constant number and an increasing number of recalculations in the total number of datapoints, and we examine when achieving optimal cumulative regret is possible.

Introduction

In many online settings, one faces the problem on when to recalculate a given solution based on new data. This phenomenon occurs in various settings by different names: in the bandit framework, "sticky" decisions prevent the learner from switching arms without paying a cost (Dekel et al. 2014; Kash, Reyzin, and Yu 2022; Machado et al. 2018), in the online clustering setting every time one switchs solutions, one may need to pay for new centers (Bhattacharjee et al. 2023; Bhattacharjee and Moshkovitz 2021; Hess, Moshkovitz, and Sabato 2021; Moshkovitz 2021), in facility location, adding a new facility adds cost (Fotakis 2008; Meyerson 2001).

The specific details of different problems require the analysis of their respective structures and often have their own involved solutions. Here, we attempt to take a broader view, and we adopt the learning language of additive regret (instead of "competitive ratios," etc. from the streaming literature, though the results apply just as well there).

We assume we have a black-box algorithm \mathcal{A} that produces an estimator with expected per-round regret of $\mathcal{R}_{t}(x) \in[0,1]$ on a new data-point x when given samples $S_{t}=\left\{x_{1} \ldots x_{t}\right\}$ and when point x is drawn from the same distribution as $x_{1}, \ldots x_{t}$, which we will generically refer to as D. Given the assumption above, we will drop the argument from the function \mathcal{R}. We also define $\mathcal{R}_{0}=1$, which means that until samples are given to \mathcal{A}, full regret is suffered by its (lack of) solution.

We call giving samples $\left\{x_{1}, \ldots x_{t}\right\}$ to \mathcal{A} a recalculation at round t. We work in the setting where calls to \mathcal{A} are expensive and need to be traded off against the benefits to improving regret. A call to \mathcal{A} involves recalculating, and possibly
committing to, a new solution to a given problem. For example, in the case of facility location, it involves the costly opening of new facilities (or the moving of old ones).

Hence, we are interested in understanding the optimal recalculation strategy as minimize cumulative regret for various budgets on calls to \mathcal{A}. Given a strategy that recalculates at rounds $C=\left\{t_{1}, t_{2}, \ldots\right\}$, where each t_{i} represents a sequential point drawn from the distribution, the expected cumulative regret \mathcal{R}^{T} would be

$$
\begin{equation*}
\mathcal{R}^{T}=\sum_{i=1}^{T} \max _{t \in C \text { s.t. } t<i} \mathcal{R}_{t} \tag{1}
\end{equation*}
$$

In this paper, we will consider per-round regret guarantees of the form $t^{-\varepsilon}$

$$
\begin{equation*}
\mathcal{R}_{t}=O\left(1 / t^{\varepsilon}\right) \tag{2}
\end{equation*}
$$

which is known to be the asymptotically optimal regret for many problems in bandit and online learning in the stochastic setting (Auer et al. 2002). Rephrasing this in our terminology, we have that for the recalculation schedule $C=$ $\{1, \ldots, T\}$, the expected cumulative regret for $0 \leq \varepsilon<1$

$$
\mathcal{R}^{T}=\sum_{t=1}^{T} \mathcal{R}_{t-1}=O\left(\sum_{t=1}^{T} \frac{1}{t^{\varepsilon}}\right)=O\left(T^{1-\varepsilon}\right)
$$

So even when recalculating at every round, a regret guarantee smaller than $O\left(T^{1-\varepsilon}\right)$ is not possible, and we therefore call this rate optimal. This is the quantity we will compare to while attempting to do many fewer recalculations.

To simplify notation further, we will henceforth use \mathcal{R} for expected regret. Therefore, all of our results will be on bounding regret in expectation.

Before proceeding, we note that another interesting setting $\varepsilon=1$ for $\mathcal{R}_{t}=O(1 / t)$, which is, for example, relevant for problems of estimation of parameters to minimize mean squared error (MSE), where the squared error of the empirical average of t samples versus the true estimate scales as σ^{2} / t (DeGroot 1986). Here, we would have

$$
\mathcal{R}^{T}=O\left(\sum_{t=1}^{T} \frac{1}{t}\right)=O(\log T)
$$

Warm up

We begin by analyzing the special case of $\mathcal{R}_{t}=1 / \sqrt{t}$ The argument in the previous section shows that the optimum regret in this situation is $O(\sqrt{T})$. However, this was the setting in which we recalculated every time we drew a point, which in the online setting isn't always practicable. Thus, inducing a trade-off between the amount of times we recalculate and the regret formed in our calculation.
Proposition 1. Let D be a probability distribution from which T data points are sampled online and let $\mathcal{R}_{t}=$ $O(1 / \sqrt{t})$. Using one recalculation, one can achieve an expected regret of $O\left(T^{2 / 3}\right)$.

Proof. We first begin by calculating the optimal expected regret of calculating the algorithm just once. Let c be a constant such that $0 \leq c \leq 1$. We have that the expected regret must be:

$$
\sum_{t=1}^{T^{c}} \mathcal{R}_{0}+\sum_{t=T^{c}+1}^{T} \mathcal{R}_{T^{c}}=O\left(T^{c}+T^{1-c / 2}\right)
$$

We note that this is just a simple optimization of the right hand side, so we equate the exponents and get $c=2 / 3$. This recovers the well-known bound of ε-first, (ε-greedy, and epoch-greedy) sampling (Langford and Zhang 2007; Sutton and Barto 2018; Tran-Thanh et al. 2010).

Uniform recalculations

One naive idea is to create a sampling schedule that solves our problem is to sample uniformly, so after observing a set ℓ amount of points we sample again and continue in this manner. However, we find this to at best require $O\left(T^{\varepsilon}\right)$ recalculations to get asymptotically optimum regret.
Lemma 2. Let D be a probability distribution from which T data points are sampled online and let $\mathcal{R}_{t}=O\left(1 / t^{\varepsilon}\right)$ for $0 \leq \varepsilon<1$. If we recalculate uniformly after observing every ℓ points (and therefore recalculate T / ℓ times), then we incur an expected regret of $O\left(\ell+T^{1-\varepsilon}\right)$.
Proof. We calculate the expected regret for recalculating after every ℓ points, we carry out the calculation by using the general formula for a uniform schedule.

$$
\begin{aligned}
\sum_{i=0}^{T / \ell} \sum_{t=1}^{\ell} \mathcal{R}_{\ell i} & =\ell+O\left(\sum_{i=1}^{T / \ell} \sum_{t=1}^{\ell} \frac{1}{(i \ell)^{\varepsilon}}\right) \\
& =\ell+O\left(\sum_{i=1}^{T / \ell} \frac{\ell^{1-\varepsilon}}{i^{\varepsilon}}\right) \\
& =O\left(\ell+T^{1-\varepsilon}\right)
\end{aligned}
$$

which completes the proof.
As the lemma above shows, a constant number of recalculations would imply linearly many recalculations between rounds and therefore linear regret. Therefore, we need a smarter recalculation strategy if we want to recalculate only
a constant number of times. This is presented in the following section.

We see in the previous section that uniform recalculation scheduling fails to guarantee small expected regret with a small number of recalculations. So we pivot to non-uniform schedules. Taking, first, a look at what we can do with a constant number of recalculations.

Constant number of recalculations

We now consider the case when we are allowed a constant number of recalculations, but they need not be uniformly spaced.
Proposition 3. Let D be a probability distribution from which T data points are sampled online and let $\mathcal{R}_{t}=$ $O\left(1 / t^{\varepsilon}\right)$ for $0 \leq \varepsilon \leq 1$. Using one recalculation, one can achieve an expected cumulative regret of

$$
\mathcal{R}^{T}=O\left(T^{1 /(1+\varepsilon)}\right)
$$

Proof. Consider recalculating after T^{c} rounds for $c=\frac{1}{1+\varepsilon}$. We suffer $O\left(T^{1 /(1+\varepsilon)}\right)$ cumulative regret on those rounds. For the remaining $T-T^{c} \leq T$ rounds, we suffer at most

$$
\begin{aligned}
O\left(T / T^{c \varepsilon}\right) & =O\left(T^{1-c \varepsilon}\right) \\
& =O\left(T^{1-\varepsilon /(1+\varepsilon)}\right) \\
& =O\left(T^{1 /(1+\varepsilon)}\right)
\end{aligned}
$$

regret.
Proposition 4. Let D be a probability distribution from which T data points are sampled online and let $\mathcal{R}_{t}=$ $O\left(1 / t^{\varepsilon}\right)$ for $0 \leq \varepsilon \leq 1$. Using two recalculations, one can achieve an expected cumulative regret of

$$
\mathcal{R}^{T}=O\left(T^{1 /\left(1+\varepsilon+\varepsilon^{2}\right)}\right)
$$

Proof. Consider recalculating after $T^{c_{1}}$ and $T^{c_{2}}$ for $0 \leq$ $c_{1} \leq c_{2} \leq 1$. Extending the argument in Lemma 3, we incur a total regret of $\mathcal{R}^{T} \leq T^{c_{1}}+T^{c_{2}-c_{1} \varepsilon}+T^{1-c_{2} \varepsilon}$. Equalizing the three terms we get the equations

$$
c_{1}=c_{2}-c_{1} \varepsilon \text { and } c_{1}=1-c_{2} \varepsilon
$$

Solving the above yields $c_{1}=\frac{1}{1+\varepsilon+\varepsilon^{2}}$ and yields an expected cumulative regret of $O\left(T^{c_{1}}\right)$.

Theorem 5. Let D be a probability distribution from which T data points are sampled online and let $\mathcal{R}_{t}=O\left(1 / t^{\varepsilon}\right)$ for $0 \leq \varepsilon<1$. Using n recalculations, one can achieve an expected cumulative regret of

$$
\mathcal{R}^{T}=O\left(n T^{\frac{1-\varepsilon}{1-\varepsilon^{n+1}}}\right)
$$

Proof. Generalizing from the above, we divide into n recalculations and bound $\mathcal{R}^{T} \leq \sum_{i=1}^{n+1} T^{c_{i}-c_{i-1} \varepsilon}$ setting $c_{0}=0$ and $c_{n+1}=1$.

We argue that solving for the system of equations leads to the following recursive formula:

$$
c_{j}=c_{j+1} \frac{\sum_{i=0}^{j-1} \varepsilon^{i}}{\sum_{i=0}^{j} \varepsilon^{i}} .
$$

We proceed inductively, we first see that $c_{1}=c_{2}-\varepsilon c_{1}$, which gets us $c_{1}=c_{2}(1+\varepsilon)^{-1}$, as desired. Moving on, we assume this holds for c_{j-1} and solve for c_{j}.

$$
\begin{aligned}
c_{j}-\varepsilon c_{j-1} & =c_{j+1}-\varepsilon c_{j} \\
c_{j}(1+\varepsilon) & =c_{j+1}+\varepsilon c_{j-1} \\
c_{j}(1+\varepsilon) & =c_{j+1}+c_{j} \varepsilon \frac{\sum_{i=0}^{j-2} \varepsilon^{i}}{\sum_{i=0}^{j-1} \varepsilon^{i}} \\
c_{j}\left(1+\varepsilon-\frac{\sum_{i=1}^{j-1} \varepsilon^{i}}{\sum_{i=0}^{j-1} \varepsilon^{i}}\right) & =c_{j+1} \\
c_{j}\left(1+\varepsilon-1+\frac{1}{\sum_{i=0}^{j-1} \varepsilon^{i}}\right) & =c_{j+1} \\
c_{j} \frac{\sum_{i=0}^{j} \varepsilon^{i}}{\sum_{i=0}^{j-1} \varepsilon^{i}} & =c_{j+1} \\
c_{j} & =c_{j+1} \frac{\sum_{i=0}^{j-1} \varepsilon^{i}}{\sum_{i=0}^{j} \varepsilon^{i}} .
\end{aligned}
$$

So we have a recursive formula and now we can see that if we terminate after n recalculations we have a telescoping product, and we have that

$$
c_{1}=\frac{1}{\sum_{i=0}^{n} \varepsilon^{i}}=\frac{1-\varepsilon}{1-\varepsilon^{n+1}} .
$$

Since the $n+1$ phases have equal regret, the total regret is $O\left(n T_{1}^{c}\right)$, producing the bound of $\mathcal{R}^{T}=O\left(n T^{\frac{1-\varepsilon}{1-\varepsilon^{n+1}}}\right)$. This bound tends to T^{ε} for arbitrarily high constant n.

Schedules with increasing recalculations in T

After seeing some extreme examples and results on constants, we wish to discover how to improve the amount of times needed to recalculate while still maintaining the optimum expected regret. By employing a "doubling trick" argument, we see that we can easily reduce to $\log (T)$ recalculations. We note that other settings have also been studied that achieve optimal regret using logarithmically many policy "switches," e.g. Abbasi-Yadkori, Pál, and Szepesvári (2011); Jaksch, Ortner, and Auer (2010).

Lemma 6. Let D be a probability distribution from which T points are sampled online and let $\mathcal{R}_{t}=O\left(1 / t^{\varepsilon}\right)$ for $0 \leq$ $\varepsilon<1$. There exists a sequence of $\log (T)$ recalculations for which we can achieve optimal expected regret of $O\left(T^{1-\varepsilon}\right)$.

Proof. Let $T=2^{m}$, with m sufficiently large, and let $\mathcal{L}=\left\{2^{0}, 2^{1}, \ldots 2^{m-1}\right\}$. If we recalculate the algorithm after seeing each point in \mathcal{L}, then we have the following expected
cost:

$$
\begin{aligned}
\sum_{i=0}^{m} \sum_{t=1}^{2^{i}} \mathcal{R} & \leq O\left(\sum_{i=0}^{m} \sum_{t=1}^{2^{i}}\left(\frac{1}{2^{(i-1) \varepsilon}}\right)\right) \\
& =O\left(\sum_{i=0}^{m}\left(2^{i-(i-1) \varepsilon}\right)\right) \\
& =O\left(\sum_{i=0}^{m}\left(2^{i(1-\varepsilon)}\right)\right) \\
& =O\left(2^{(1-\varepsilon) m}\right) \\
& =O\left(T^{(1-\varepsilon)}\right)
\end{aligned}
$$

This establishes that we can recalculate $\log (T)$ times and achieve optimal expected regret of $T^{1-\varepsilon}$.

We observe that if the regret is of the form $\mathcal{R}_{t}=O(1 / t)$ (the $\varepsilon=1$ case), then the regret will be bounded by $O(\log T)$ in the above schedule.

We've established that we can achieve optimal expected regret with only $\log (T)$ recalculations, we go on to establish that we can't improve this to $\log \log (T)$, by showing that the expected regret when taking $\log \log (T)$ recalculations is $O(\log \log (T) \sqrt{T})$.
Lemma 7. Let D be a probability distribution from which T are sampled online and let $\mathcal{R}_{t}=O\left(1 / t^{\varepsilon}\right)$ for $0<\varepsilon<$ 1 , where $c=1 / \varepsilon$. There exists a sequence of $\log \log (T)$ recalculations such that we can achieve an expected regret of $O\left(\log \log (T) T^{1-\varepsilon}\right)$.

Proof. Let $T=c^{c^{m}}$, with m sufficiently large. Let $\mathcal{L}=$ $\left\{\ell_{0}, \ell_{1}, \ldots \ell_{m}\right\}$. We recalculate after seeing each point in \mathcal{L}.

We wish to find a schedule that will cover all T with $\log \log (T)$ recalculations. We do this with the following schedule: at epoch i, once we have seen a total of $T^{1-c^{-i}}$ points we recalculate. We show that if we cover half of T at epoch $\log \log (T)$, then in the next epoch we will have seen all of T. So we establish this recalculation schedule achieves this. Let y be the amount of times needed to see half of T under the above scheduling scheme, so:

$$
\begin{aligned}
1 / c & =T^{-c^{-y}} \\
-\log _{c}(c) & =\left(-c^{-y}\right) \log _{c}(T) \\
\frac{1}{\log _{c}(T)} & =c^{-y} \\
y & =\log _{c} \log _{c}(T)
\end{aligned}
$$

We note that we found the exact point at which we would have half, and that this makes $\log \log (T)$ the minimum amount of rounds needed to cover all of T with this particular schedule. We can be sure of this since there were no assumptions made on the size of T, so we couldn't reduce to $\log \log \log (T)$ rounds. So now, we can sum our per-round
cost over the amount of rounds we must run:

$$
\begin{aligned}
\sum_{i=0}^{m} \sum_{t=1}^{T^{1-c^{-i}}} \mathcal{R}_{T^{1-c^{-(i-1)}}} & \leq \sum_{i=1}^{m} \sum_{t=1}^{T^{1-c^{-i}}} T^{-\frac{c^{i-1}-1}{c^{i}}} \\
& =\sum_{i=1}^{m} T^{1-c^{-i}-c^{-1}+c^{-i}} \\
& =\log \log (T) T^{1-c^{-1}} \\
& =\log \log (T) T^{1-\varepsilon}
\end{aligned}
$$

Computing the inner sum, we see that at each round, we will have $O\left(T^{1-\varepsilon}\right)$ expected regret.

Now we establish a lower bound, in particular that we cannot achieve an expected regret of $O\left(T^{1-\varepsilon}\right)$ with $\log \log (T)$ recalculations.

Lemma 8. Any schedule that performs $O(\log \log T)$ recalculations using an algorithm that suffers per-round regret of $\mathcal{R}=O\left(1 / t^{\epsilon}\right)$ must suffer $\omega\left(T^{1-\epsilon}\right)$ cumulative regret.

Proof. Given $\log \log (T)$ recalculations we are lowerbounded by a regret of $O\left(T^{1-\varepsilon}\right)$. Specifically, we show that we cannot achieve a regret of $O\left(T^{1-\varepsilon}\right)$ given $\log \log (T)$ recalculations. So assume to the contrary, that there exists a schedule that does this. Now, to achieve this clearly the regret incurred at each recalculation has to be $O\left(T^{1-\varepsilon}\right)$. Based on this we craft an inductive argument on the size of each recalculation round. At round $i-1$, the size, $T^{c_{i-1}}$ must be $O\left(T^{1-\varepsilon^{i}}\right)$. As a base case, we see that $T^{c_{0}}=O\left(T^{1-\varepsilon}\right)$. We move onto the inductive step: We note that the regret for round i is

$$
\begin{aligned}
T^{c_{i}} T^{-\varepsilon c_{i-1}} & =O\left(T^{1-\varepsilon}\right) \\
T^{c_{i}} & =O\left(T^{1-\varepsilon+\varepsilon c_{i-1}}\right)
\end{aligned}
$$

This implies,

$$
\begin{aligned}
& c_{i} \leq 1-\varepsilon+\varepsilon\left(1-\varepsilon^{i-2}\right) \\
& c_{i} \leq 1-\varepsilon^{i-1}
\end{aligned}
$$

This, then results in the total portion of T witnessed as $\sum_{n=1}^{\log \log (T)} T^{1-\varepsilon^{n}}$. Now, since

$$
\sum_{n=1}^{\log \log (T)} T^{1-\varepsilon^{n}} \leq \log \log (T) T^{1-\varepsilon^{\log \log (T)}}=o(T)
$$

we have failed to witness all of T in $\log \log (T)$ rounds and have reached a contradiction.

Acknowledgments

This work was supported in part by National Science Foundation grant ECCS-2217023. We thank the anonymous reviewers of this paper for their helpful comments.

References

Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Improved Algorithms for Linear Stochastic Bandits. In ShaweTaylor, J.; Zemel, R. S.; Bartlett, P. L.; Pereira, F. C. N.; and Weinberger, K. Q., eds., Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain, 23122320.

Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E. 2002. The Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput., 32(1): 48-77.
Bhattacharjee, R.; Imola, J.; Moshkovitz, M.; and Dasgupta, S. 2023. Online k-means Clustering on Arbitrary Data Streams. In Agrawal, S.; and Orabona, F., eds., International Conference on Algorithmic Learning Theory, February 2023, 2023, Singapore, volume 201 of Proceedings of Machine Learning Research, 204-236. PMLR.
Bhattacharjee, R.; and Moshkovitz, M. 2021. Nosubstitution k-means Clustering with Adversarial Order. In Feldman, V.; Ligett, K.; and Sabato, S., eds., Algorithmic Learning Theory, 16-19 March 2021, Virtual Conference, Worldwide, volume 132 of Proceedings of Machine Learning Research, 345-366. PMLR.
DeGroot, M. H. 1986. Probability and Statistics.
Dekel, O.; Ding, J.; Koren, T.; and Peres, Y. 2014. Bandits with switching costs: $T^{2 / 3}$ regret. In Shmoys, D. B., ed., Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, 459-467. ACM.
Fotakis, D. 2008. On the Competitive Ratio for Online Facility Location. Algorithmica, 50(1): 1-57.
Hess, T.; Moshkovitz, M.; and Sabato, S. 2021. A Constant Approximation Algorithm for Sequential Random-Order No-Substitution k-Median Clustering. In Ranzato, M.; Beygelzimer, A.; Dauphin, Y. N.; Liang, P.; and Vaughan, J. W., eds., Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, 3298-3308.
Jaksch, T.; Ortner, R.; and Auer, P. 2010. Near-optimal Regret Bounds for Reinforcement Learning. J. Mach. Learn. Res., 11: 1563-1600.
Kash, I. A.; Reyzin, L.; and Yu, Z. 2022. Slowly Changing Adversarial Bandit Algorithms are Provably Efficient for Discounted MDPs. CoRR, abs/2205.09056.
Langford, J.; and Zhang, T. 2007. The epoch-greedy algorithm for contextual multi-armed bandits. Advances in neural information processing systems, 20(1): 96-1.
Machado, M. C.; Bellemare, M. G.; Talvitie, E.; Veness, J.; Hausknecht, M. J.; and Bowling, M. 2018. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents (Extended Abstract). In Lang, J., ed., Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, 5573-5577. ijcai.org.

Meyerson, A. 2001. Online Facility Location. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, 426-431. IEEE Computer Society.
Moshkovitz, M. 2021. Unexpected Effects of Online noSubstitution k-means Clustering. In Feldman, V.; Ligett, K.; and Sabato, S., eds., Algorithmic Learning Theory, 16-19 March 2021, Virtual Conference, Worldwide, volume 132 of Proceedings of Machine Learning Research, 892-930. PMLR.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning: An introduction. MIT press.
Tran-Thanh, L.; Chapman, A.; De Cote, E. M.; Rogers, A.; and Jennings, N. R. 2010. Epsilon-first policies for budgetlimited multi-armed bandits. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 24, 12111216.

